Abstract

Helicobacter infections of laboratory animals may influence the results of in vivo experiments, necessitating diagnostic methods that are specific, sensitive and rapid. Polymerase chain reaction (PCR) is currently the preferred diagnostic tool for detecting Helicobacter infections in mice; however, detection ability may vary considerably among laboratories. Nine commercial and academic European labs participated in a 3-year ring study that was designed to explore this problem. The authors sought to identify which PCR methods were used for detection of murine Helicobacter spp. in fecal pellets and to compare the sensitivity, specificity and reproducibility of these methods. The study consisted of four rounds in which labs tested mouse fecal samples spiked with H. bilis, H. hepaticus or H. muridarum. The first round showed differences of up to 3 logs in detection sensitivity. Over the course of the study, sensitivity, specificity and reproducibility of PCR results in all labs improved substantially. By the study's conclusion, diagnostic ability in all labs was sufficient to reliably detect Helicobacter in naturally infected mice.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Helicobacter muridarum sp. nov., a microaerophilic helical bacterium with a novel ultrastructure isolated from the intestinal mucosa of rodents. Int. J. Syst. Bacteriol. 42, 27–36 (1992).

  2. 2.

    , & Isolation and characterization of “Flexispira rappini” from laboratory mice. J. Clin. Microbiol. 31, 2709–2714 (1993).

  3. 3.

    et al. 'Flexispira rappini' strains represent at least 10 Helicobacter taxa. Int. J. Syst. Evol. Microbiol. 50, 1781–1787 (2000).

  4. 4.

    et al. Helicobacter hepaticus sp. nov., a microaerophilic bacterium isolated from livers and intestinal mucosal scrapings from mice. J. Clin. Microbiol. 32, 1238–1245 (1994).

  5. 5.

    , , & Evaluation of antibiotic therapies for eradication of Helicobacter hepaticus. Antimicrob. Agents Chemother. 39, 1292–1294 (1995).

  6. 6.

    et al. Helicobacter trogontum sp. nov., isolated from the rat intestine. Int. J. Syst. Bacteriol. 46, 916–921 (1996).

  7. 7.

    et al. Ultrastructure of Helicobacter trogontum in culture and in the gastrointestinal tract of gnotobiotic mice. J. Med. Microbiol. 47, 513–520 (1998).

  8. 8.

    et al. Helicobacter rodentium sp. nov., a urease-negative Helicobacter species isolated from laboratory mice. Int. J. Syst. Bacteriol. 47, 627–634 (1997).

  9. 9.

    et al. Helicobacter typhlonius sp. nov., a novel murine urease-negative Helicobacter species. J. Clin. Microbiol. 39, 3920–3926 (2001).

  10. 10.

    , , , & Helicobacter ganmani sp. nov., a urease-negative anaerobe isolated from the intestines of laboratory mice. Int. J. Syst. Evol. Microbiol. 51, 1881–1889 (2001).

  11. 11.

    et al. A novel enterohepatic Helicobacter species 'Helicobacter mastomyrinus' isolated from the liver and intestine of rodents. Helicobacter 10, 59–70 (2005).

  12. 12.

    , , & Chronic active hepatitis in mice caused by Helicobacter hepaticus. Am. J. Pathol. 145, 959–968 (1994).

  13. 13.

    et al. Helicobacter bilis sp. nov., a novel Helicobacter species isolated from bile, livers, and intestines of aged, inbred mice. J. Clin. Microbiol. 33, 445–454 (1995).

  14. 14.

    et al. Inflammatory large bowel disease in immunodeficient mice naturally infected with Helicobacter hepaticus. Lab. Anim. Sci. 46, 15–20 (1996).

  15. 15.

    , , & Helicobacter bilis-induced inflammatory bowel disease in scid mice with defined flora. Infect. Immun. 65, 4858–4864 (1997).

  16. 16.

    et al. Inflammatory bowel disease: an immunity-mediated condition triggered by bacterial infection with Helicobacter hepaticus. Infect. Immun. 65, 3126–3131 (1997).

  17. 17.

    et al. Enterohepatic lesions in SCID mice infected with Helicobacter bilis. Lab. Anim. Sci. 48, 334–339 (1998).

  18. 18.

    , , & Helicobacter bilis/Helicobacter rodentium co-infection associated with diarrhea in a colony of scid mice. Lab. Anim. Sci. 48, 455–459 (1998).

  19. 19.

    et al. A novel urease-negative Helicobacter species associated with colitis and typhlitis in IL-10-deficient mice. Infect. Immun. 67, 1757–1762 (1999).

  20. 20.

    et al. Enteric lesions in SCID mice infected with “Helicobacter typhlonicus,” a novel urease-negative Helicobacter species. Lab. Anim. Sci. 49, 496–505 (1999).

  21. 21.

    et al. Cholangiohepatitis and inflammatory bowel disease induced by a novel urease-negative Helicobacter species in A/J and Tac:ICR:HascidfRF mice. Exp. Biol. Med. (Maywood) 226, 420–428 (2001).

  22. 22.

    et al. Helicobacter-induced inflammatory bowel disease in IL-10- and T cell-deficient mice. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G764–778 (2001).

  23. 23.

    , , , & Monoassociation of SCID mice with Helicobacter muridarum, but not four other enterics, provokes IBD upon receipt of T cells. Gastroenterology 122, 1346–1354 (2002).

  24. 24.

    & Natural and experimental Helicobacter infections. Comp. Med. 54, 128–158 (2004).

  25. 25.

    et al. Recommendations for the health monitoring of rodent and rabbit colonies in breeding and experimental units. Lab. Anim. 36, 20–42 (2002).

  26. 26.

    , , & Identification of murine helicobacters by PCR and restriction enzyme analyses. J. Clin. Microbiol. 34, 942–946 (1996).

  27. 27.

    , , , & Fecal PCR assay for diagnosis of Helicobacter infection in laboratory rodents. J. Clin. Microbiol. 35, 1620–1623 (1997).

  28. 28.

    et al. Comparison of four diagnostic methods for detection of Helicobacter species in laboratory mice. Lab. Anim. Sci. 48, 85–91 (1998).

  29. 29.

    , , & Evaluation of diagnostic methods for Helicobacter bilis infection in laboratory mice. Comp. Med. 51, 406–412 (2001).

  30. 30.

    et al. Monitoring a mouse colony for Helicobacter bilis using a Helicobacter-genus-specific nested PCR. Lab. Anim. 39, 400–412 (2005).

  31. 31.

    , & Comparison of results of Helicobacter tests performed by commercial laboratories. Contemp. Top. Lab. Anim. Sci. 36, 60 (1997).

  32. 32.

    Helicobacter-Infektionen bei Nagern: Etablierung neuer real-time PCR Assays, Kultivierung und Infektionsversuche mit ausgewählten Helicobacter-Stämmen. Thesis, Univ. Zurich (2004).

  33. 33.

    et al. Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. J. Clin. Microbiol. 35, 995–998 (1997).

  34. 34.

    et al. Identification of widespread Helicobacter hepaticus infection in feces in commercial mouse colonies by culture and PCR assay. J. Clin. Microbiol. 33, 2968–2972 (1995).

  35. 35.

    et al. A sensitive and specific PCR method to detect Helicobacter felis in a conventional mouse model. Clin. Diagn. Lab. Immunol. 3, 73–78 (1996).

Download references

Acknowledgements

We thank D. Bulian, C. Ludwig, S. Bensch, S. Scharold, I. Krüger, M. Wöhl, S. Bellgardt, K. Mueller and E. Gubanow for excellent technical assistance.

Author information

Author notes

    • Corinna Moerth

    Present address: Max Planck Institute for Biochemistry, Martinsried, Germany.

    • Michael Mähler

    Present address: BioDoc, Biomedical Diagnostics, Hannover, Germany.

    • Michel Seidelin

    Present address: CLC bio AS, Aarhus, Denmark.

    • Corinna Moerth
    •  & Esther Mahabir

    These authors contributed equally to this work.

Affiliations

  1. Department of Comparative Medicine, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany.

    • Corinna Moerth
    • , Esther Mahabir
    • , Markus Brielmeier
    • , Kyriaki Markoullis
    • , Karin Jacobsen
    • , Patricia Wilhelm
    •  & Jörg Schmidt
  2. Institute of Toxicology, Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany.

    • Wolfgang Beisker
  3. The Microbiology Laboratories, North Harrow, Middlesex, UK.

    • Jeffrey Needham
  4. Department of Molecular Biology, Vet Med Labor GmbH, Division of IDEXX Laboratories, Ludwigsburg, Germany.

    • Hans-Jörg Balzer
  5. LAS Diagnostics, GlaxoSmithKline, Herts, UK.

    • Louise E. Bater
    •  & Jacqueline Dix
  6. Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Germany

    • André Bleich
    •  & Michael Mähler
  7. Molecular Biology Laboratory, Harlan UK Hillcrest, Loughborough, UK.

    • Adrian Deeny
    • , Julian D. Phipps
    •  & Andy Tomlinson
  8. GIMmbH, Wildenbruch, Germany.

    • Angelika Lorenz
  9. Microbiological Diagnostics, German Cancer Research Center, Heidelberg, Germany.

    • Werner Nicklas
  10. Institute of Microbiology and Hygiene, Technical University, Munich, Germany.

    • Karin E. Seidel
  11. Taconic Europe, Silkeborg, Denmark.

    • Michel Seidelin
    •  & Martin F. Toft

Authors

  1. Search for Corinna Moerth in:

  2. Search for Esther Mahabir in:

  3. Search for Markus Brielmeier in:

  4. Search for Kyriaki Markoullis in:

  5. Search for Wolfgang Beisker in:

  6. Search for Jeffrey Needham in:

  7. Search for Hans-Jörg Balzer in:

  8. Search for Louise E. Bater in:

  9. Search for André Bleich in:

  10. Search for Adrian Deeny in:

  11. Search for Jacqueline Dix in:

  12. Search for Karin Jacobsen in:

  13. Search for Angelika Lorenz in:

  14. Search for Michael Mähler in:

  15. Search for Werner Nicklas in:

  16. Search for Julian D. Phipps in:

  17. Search for Karin E. Seidel in:

  18. Search for Michel Seidelin in:

  19. Search for Martin F. Toft in:

  20. Search for Andy Tomlinson in:

  21. Search for Patricia Wilhelm in:

  22. Search for Jörg Schmidt in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Esther Mahabir.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/laban1108-521

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing