Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Aberrant upregulation of miR-21 in placental tissues of macrosomia

Abstract

Objective:

With China’s rapid economic growth in the past 3 decades, an increase in rate of macrosomia has been reported in China. Fetal growth is a result of multiple factors including genetic potential for growth, maternal nutrition, maternal metabolism, endocrine factors and placental perfusion and function. However, the detailed mechanism of how macrosomia happened remains poorly known. Recent studies showed that the expression of a number of microRNAs (miRNAs) in placentas is involved in fetal growth. We hypothesized that aberrant expression of microRNA-21 (miR-21) and microRNA-16 (miR-16) in placenta is associated with macrosomia.

Study design:

Using quantitative real time PCR, we analyzed the expression level of miR-21 and miR-16 in terminal placentas of macrosomia pregnancies (n=35) and normal controls (n=35). Potential target genes of miRNA were predicted using TargetScan, miRanda and PicTar. Target genes were mapped to KEGG pathways using KEGG Mapper with an in-house Perl script with KEGG Gene IDs.

Result:

MiR-21 showed significant up-regulation in macrosomia (P=0.037). After controlling the potential confounders, multivariable logistic regression analysis suggested the risk of macrosomia increased, multivariable adjusted ORs of macrosomia for those in the highest tertile was 3.931 (95%CI: 1.049-14.736) compared with those in the lowest tertile in terms of miR-21 level. The target genes of miR-21 were involved in eight possible signaling pathways. They were pathways in P53 signaling pathway, MAPK signaling pathway, HIF-1 signaling pathway, TGF-beta signaling pathway and PI3K-Akt signaling pathway (P<0.001), Wnt signaling pathway, Jak-STAT signaling pathway and mTOR signaling pathway (P<0.05).

Conclusion:

Our study is the first to investigate the association between placental miRNA expression and macrosomia. Our results indicate that the expression level of miR-21 in placental tissue may be involved in the development of macrosomia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bogaerts A, Van den Bergh BR, Ameye L, Witters I, Martens E, Timmerman D et al. Interpregnancy weight change and risk for adverse perinatal outcome. Obstet Gynecol 2013; 122 (5): 999–1009.

    Article  Google Scholar 

  2. Liu KC, Joseph JA, Nkole TB, Kaunda E, Stringer JS, Chi BH et al. Predictors and pregnancy outcomes associated with a newborn birth weight of 4000 g or more in Lusaka, Zambia. Int J Gynaecol Obstet 2013; 122 (2): 150–155.

    Article  Google Scholar 

  3. Arbuckle TE, Sherman GJ . An analysis of birth weight by gestational age in Canada. CMAJ 1989; 140 (2): 157–160 65

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bergmann RL, Richter R, Bergmann KE, Plagemann A, Brauer M, Dudenhausen JW . Secular trends in neonatal macrosomia in Berlin: influences of potential determinants. Paediatr Perinat Epidemiol 2003; 17 (3): 244–249.

    Article  Google Scholar 

  5. Power C . National trends in birth weight: implications for future adult disease. BMJ 1994; 308 (6939): 1270–1271.

    Article  CAS  Google Scholar 

  6. Schack-Nielsen L, Molgaard C, Sorensen TI, Greisen G, Michaelsen KF . Secular change in size at birth from 1973 to 2003: national data from Denmark. Obesity (Silver Spring) 2006; 14 (7): 1257–1263.

    Article  Google Scholar 

  7. Skjaerven R, Gjessing HK, Bakketeig LS . Birthweight by gestational age in Norway. Acta Obstet Gynecol Scand 2000; 79 (6): 440–449.

    Article  CAS  Google Scholar 

  8. Lu Y, Zhang J, Lu X, Xi W, Li Z . Secular trends of macrosomia in southeast China, 1994–2005. BMC Public Health 2011; 11: 818.

    Article  Google Scholar 

  9. Lucchini R, Barba G, Giampietro S, Trivelli M, Dito L, De Curtis M . [Macrosomic infants: clinical problems at birth and afterward]. Minerva Pediatr 2010; 62 (3 Suppl 1): 65–66.

    CAS  PubMed  Google Scholar 

  10. Voldner N, Froslie KF, Bo K, Haakstad L, Hoff C, Godang K et al. Modifiable determinants of fetal macrosomia: role of lifestyle-related factors. Acta Obstet Gynecol Scand 2008; 87 (4): 423–429.

    Article  Google Scholar 

  11. Voldner N, Froslie KF, Haakstad LA, Bo K, Henriksen T . Birth complications, overweight, and physical inactivity. Acta Obstet Gynecol Scand. 2009; 88 (5): 550–555.

    Article  Google Scholar 

  12. Voldner N, Qvigstad E, Froslie KF, Godang K, Henriksen T, Bollerslev J . Increased risk of macrosomia among overweight women with high gestational rise in fasting glucose. J Matern Fetal Neonatal Med 2010; 23 (1): 74–81.

    Article  CAS  Google Scholar 

  13. Cetin I, Alvino G, Radaelli T, Pardi G . Fetal nutrition: a review. Acta Paediatr Suppl 2005; 94 (449): 7–13.

    Article  Google Scholar 

  14. Roland MC, Friis CM, Voldner N, Godang K, Bollerslev J, Haugen G et al. Fetal growth versus birthweight: the role of placenta versus other determinants. PLoS One 2012; 7 (6): e39324.

    Article  CAS  Google Scholar 

  15. Baumann MU, Deborde S, Illsley NP . Placental glucose transfer and fetal growth. Endocrine 2002; 19 (1): 13–22.

    Article  CAS  Google Scholar 

  16. Haggarty P . Fatty acid supply to the human fetus. Annu Rev Nutr 2010; 30: 237–255.

    Article  CAS  Google Scholar 

  17. Jansson T . Amino acid transporters in the human placenta. Pediatr Res 2001; 49 (2): 141–147.

    Article  CAS  Google Scholar 

  18. Filiberto AC, Maccani MA, Koestler D, Wilhelm-Benartzi C, Avissar-Whiting M, Banister CE et al. Birthweight is associated with DNA promoter methylation of the glucocorticoid receptor in human placenta. Epigenetics 2011; 6 (5): 566–572.

    Article  CAS  Google Scholar 

  19. Mattick JS, Makunin IV . Non-coding RNA. Hum Mol Genet 2006; 15 Spec No 1: R17–R29.

    Article  Google Scholar 

  20. Zhang C . MicroRNomics: a newly emerging approach for disease biology. Physiol Genomics 2008; 33 (2): 139–147.

    Article  Google Scholar 

  21. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116 (2): 281–297.

    Article  CAS  Google Scholar 

  22. Urbich C, Kuehbacher A, Dimmeler S . Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 2008; 79 (4): 581–588.

    Article  CAS  Google Scholar 

  23. Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 2004; 14 (12): 2486–2494.

    Article  CAS  Google Scholar 

  24. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433 (7027): 769–773.

    Article  CAS  Google Scholar 

  25. Maccani MA, Padbury JF, Lester BM, Knopik VS, Marsit CJ . Placental miRNA expression profiles are associated with measures of infant neurobehavioral outcomes. Pediatr Res 2013; 74 (3): 272–278.

    Article  CAS  Google Scholar 

  26. Enquobahrie DA, Abetew DF, Sorensen TK, Willoughby D, Chidambaram K, Williams MA . Placental microRNA expression in pregnancies complicated by preeclampsia. Am J Obstet Gynecol 2011; 204 (2): 178 e12–21.

    Article  Google Scholar 

  27. Mayor-Lynn K, Toloubeydokhti T, Cruz AC, Chegini N . Expression profile of microRNAs and mRNAs in human placentas from pregnancies complicated by preeclampsia and preterm labor. Reprod Sci 2011; 18 (1): 46–56.

    Article  CAS  Google Scholar 

  28. Maccani MA, Padbury JF, Marsit CJ . miR-16 and miR-21 expression in the placenta is associated with fetal growth. PLoS One 2011; 6 (6): 1.

    Article  Google Scholar 

  29. Mouillet JF, Chu T, Sadovsky Y . Expression patterns of placental microRNAs. Birth Defects Res A Clin Mol Teratol 2011; 91 (8): 737–743.

    Article  CAS  Google Scholar 

  30. Maccani MA, Avissar-Whiting M, Banister CE, McGonnigal B, Padbury JF, Marsit CJ . Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics 2010; 5 (7): 583–589.

    Article  CAS  Google Scholar 

  31. Jiang H, Xun P, Luo G, Wang Q, Cai Y, Zhang Y et al. Levels of insulin-like growth factors and their receptors in placenta in relation to macrosomia. Asia Pac J Clin Nutr 2009; 18 (2): 171–178.

    CAS  PubMed  Google Scholar 

  32. Pineles BL, Romero R, Montenegro D, Tarca AL, Han YM, Kim YM et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol 2007; 196 (3): 261.e1–261.e6.

    Article  Google Scholar 

  33. Kim YK, Yeo J, Kim B, Ha M, Kim VN . Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol Cell 2012; 46 (6): 893–895.

    Article  CAS  Google Scholar 

  34. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103 (7): 2257–2261.

    Article  CAS  Google Scholar 

  35. Liu F, Zheng S, Liu T, Liu Q, Liang M, Li X et al. MicroRNA-21 promotes the proliferation and inhibits apoptosis in Eca109 via activating ERK1/2/MAPK pathway. Mol Cell Biochem 2013; 381 (1-2): 115–125.

    Article  CAS  Google Scholar 

  36. McGregor RA, Choi MS . microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med 2011; 11 (4): 304–316.

    Article  CAS  Google Scholar 

  37. Keller P, Gburcik V, Petrovic N, Gallagher IJ, Nedergaard J, Cannon B et al. Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity. BMC Endocr Disord 2011; 11: 7.

    Article  CAS  Google Scholar 

  38. Kim YJ, Hwang SH, Cho HH, Shin KK, Bae YC, Jung JS . MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues. J Cell Physiol 2012; 227 (1): 183–193.

    Article  CAS  Google Scholar 

  39. Kim YJ, Hwang SJ, Bae YC, Jung JS . MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 2009; 27 (12): 3093–3102.

    CAS  PubMed  Google Scholar 

  40. Bost F, Aouadi M, Caron L, Binetruy B . The role of MAPKs in adipocyte differentiation and obesity. Biochimie 2005; 87 (1): 51–56.

    Article  CAS  Google Scholar 

  41. Matsuda S, Kobayashi M, Kitagishi Y . Roles for PI3K/AKT/PTEN Pathway in Cell Signaling of Nonalcoholic Fatty Liver Disease. ISRN Endocrinol 2013; 2013: 472432.

    Article  Google Scholar 

  42. Ling HY, Hu B, Hu XB, Zhong J, Feng SD, Qin L et al. MiRNA-21 reverses high glucose and high insulin induced insulin resistance in 3T3-L1 adipocytes through targeting phosphatase and tensin homologue. Exp Clin Endocrinol Diabetes 2012; 120 (9): 553–559.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the study participants for their contributions. This study was supported by Changzhou Natural Science Foundation (CJ20130013), Major Program of Changzhou Health Bureau Funds (ZD201107) and Major Program of Natural Science Foundation of the Nanjing Medical University (2011NJMU230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Xu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Perinatology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Wu, W., Zhang, M. et al. Aberrant upregulation of miR-21 in placental tissues of macrosomia. J Perinatol 34, 658–663 (2014). https://doi.org/10.1038/jp.2014.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2014.58

This article is cited by

Search

Quick links