Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

microRNA signatures associated with fetal growth restriction: a systematic review

Abstract

Placental-origin microRNA (miRNA) profiles can be useful toward early diagnosis and management of fetal growth restriction (FGR) and associated complications. We conducted a systematic review to identify case–control studies that have examined miRNA signatures associated with human FGR. We systematically searched PubMed and ScienceDirect databases for relevant articles and manually searched reference lists of the relevant articles till May 18th, 2021. Of the 2133 studies identified, 21 were included. FGR-associated upregulation of miR-210 and miR-424 and downregulation of a placenta-specific miRNA cluster miRNA located on C19MC (miR-518b, miR-519d) and miR-221-3p was reported by >1 included studies. Analysis of the target genes of these miRNA as well as pathway analysis pointed to the involvement of angiogenesis and growth signaling pathways, such as the phosphatidylinositol 3-kinase- protein kinase B (PI3K-Akt) pathway. Only 3 out of the 21 included studies reported FGR-associated miRNAs in matched placental and maternal blood samples. We conclude that FGR-associated placental miRNAs could be utilized to inform clinical practice towards early diagnosis of FGR, provided enough evidence from studies on matched placental and maternal blood samples become available.

Prospective Register of Systematic Reviews (PROSPERO) registration number: CRD42019136762.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA flow diagram.
Fig. 2: Potential role of miRNA and their target genes in fetal growth restriction (FGR).

Similar content being viewed by others

Evdokia Dimitriadis, Daniel L. Rolnik, … Ellen Menkhorst

References

  1. ACOG Practice Bulletin No. 204: Fetal Growth Restriction. Obstet Gynecol. 2019;133:e97–109.

  2. Pedersen NG, Wøjdemann KR, Scheike T, Tabor A. Fetal growth between the first and second trimesters and the risk of adverse pregnancy outcome. Ultrasound Obstet Gynecol. 2008;32:147–54.

    Article  CAS  PubMed  Google Scholar 

  3. Colella M, Frérot A, Novais ARB, Baud O. Neonatal and long-term consequences of fetal growth restriction. Curr Pediatr Rev. 2018;14:212–8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kady SM, Gardosi J. Perinatal mortality and fetal growth restriction. Best Pract Res Clin Obstet Gynaecol. 2004;18:397–410.

    Article  Google Scholar 

  5. Lees C, Marlow N, Arabin B, Bilardo CM, Brezinka C, Derks JB, et al. Perinatal morbidity and mortality in early-onset fetal growth restriction: Cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol. 2013;42:400–8.

    Article  CAS  PubMed  Google Scholar 

  6. Morales-Rosellõ J, Khalil A, Morlando M, Papageorghiou A, Bhide A, Thilaganathan B. Changes in fetal Doppler indices as a marker of failure to reach growth potential at term. Ultrasound Obstet Gynecol. 2014;43:303–10.

    Article  PubMed  Google Scholar 

  7. Battaglia FC, Lubchenco LO. A practical classification of newborn infants by weight and gestational age. J Pediatr. 1967;71:159–63.

    Article  CAS  PubMed  Google Scholar 

  8. Royal College of Obstetricians & Gynaecologists. The Investigation and Management of the Small–for–Gestational–Age Fetus. Green-top Guideline No. 31. 2014;1–34.

  9. Pereira L, Petitt M, Fong A, Tsuge M, Tabata T, Fang-Hoonver J, et al. Intrauterine growth restriction caused by underlying congenital cytomegalovirus infection. J Infect Dis. 2014;209:1573–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nikkilä A, Källén B, Maršál K. Fetal growth and congenital malformations. Ultrasound Obstet Gynecol. 2007;29:289–95.

    Article  PubMed  Google Scholar 

  11. Morrison JL, Regnault TRH. Nutrition in pregnancy: optimising maternal diet and fetal adaptations to altered nutrient supply. Nutrients. 2016;8:342.

    Article  PubMed Central  Google Scholar 

  12. Krishna U, Bhalerao S. Placental insufficiency and fetal growth restriction. J Obstet Gynecol India. 2011;61:505–11.

    Article  Google Scholar 

  13. Chen CP, Bajoria R, Aplin JD. Decreased vascularization and cell proliferation in placentas of intrauterine growth-restricted fetuses with abnormal umbilical artery flow velocity waveforms. Am J Obstet Gynecol. 2002;187:764–9.

    Article  PubMed  Google Scholar 

  14. Luo S-S, Ishibashi O, Ishikawa G, Ishikawa T, Katayama A, Mishima T, et al. Human villous trophoblasts express and secrete placenta-specific MicroRNAs into maternal circulation via exosomes1. Biol Reprod. 2009;81:717–29.

    Article  CAS  PubMed  Google Scholar 

  15. Felekkis K, Touvana E, Stefanou C, Deltas C. MicroRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia. 2010;14:236–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Fu G, Brkić J, Hayder H, Peng C. MicroRNAs in human placental development and pregnancy complications. Int J Mol Sci. 2013;14:5519–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mouillet JF, Chu T, Hubel CA, Nelson DM, Parks WT, Sadovsky Y. The levels of hypoxia-regulated microRNAs in plasma of pregnant women with fetal growth restriction. Placenta. 2010;31:781–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Luo L, Ye G, Nadeem L, Fu G, Yang BB, Honarparvar E, et al. MicroRNA-378a-5p promotes trophoblast cell survival, migration and invasion by targeting Nodal. J Cell Sci. 2012;125:3124–32.

    CAS  PubMed  Google Scholar 

  19. Fu G, Ye G, Nadeem L, Ji L, Manchanda T, Wang Y, et al. MicroRNA-376c impairs transforming growth factor-β and nodal signaling to promote trophoblast cell proliferation and invasion. Hypertension. 2013;61:864–72.

    Article  CAS  PubMed  Google Scholar 

  20. Mouillet J-F, Chu T, Nelson DM, Mishima T, Sadovsky Y. MiR-205 silences MED1 in hypoxic primary human trophoblasts. FASEB J. 2010;24:2030–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cai M, Kolluru GK, Ahmed A. Small Molecule, Big Prospects: MicroRNA in Pregnancy and Its Complications. J Pregnancy. 2017;2017:1–15.

    Article  CAS  Google Scholar 

  22. Lycoudi A, Mavreli D, Mavrou A, Papantoniou N, Kolialexi A. miRNAs in pregnancy-related complications. Expert Rev Mol Diagn. 2015;15:999–1010.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao Z, Moley KH, Gronowski AM. Diagnostic potential for miRNAs as biomarkers for pregnancy-specific diseases. Clin Biochem. 2013;46:953–60.

    Article  CAS  PubMed  Google Scholar 

  24. Barchitta M, Maugeri A, Quattrocchi A, Agrifoglio O, Agodi A. The role of miRNAs as biomarkers for pregnancy outcomes: a comprehensive review. Int J Genom. 2017;2017:1–11.

    Article  CAS  Google Scholar 

  25. Hayder H, O’Brien J, Nadeem U, Peng C. MicroRNAs: crucial regulators of placental development. Reproduction. 2018 ;155:R259–71.

    Article  CAS  PubMed  Google Scholar 

  26. Dewdney B, Trollope A, Moxon J, Thomas Manapurathe D, Biros E, Golledge J. Circulating MicroRNAs as biomarkers for acute ischemic stroke: a systematic review. J Stroke Cerebrovasc Dis. 2018;27:522–30.

    Article  PubMed  Google Scholar 

  27. Liang YZ, Li JJH, Xiao HB, He Y, Zhang L, Yan YX. Identification of stress-related microRNA biomarkers in type 2 diabetes mellitus: a systematic review and meta-analysis. J Diabetes. 2020;12:633–44.

    Article  CAS  PubMed  Google Scholar 

  28. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6:e1000100.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Singh J. Mendeley: a free research management tool for desktop and web. J Pharmacol Pharmacother. 2010;1:62.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hosp Res Inst. 2000:2–4. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.

  31. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane H, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4:R60.

    Article  PubMed Central  Google Scholar 

  32. Higashijima A, Miura K, Mishima H, Kinoshita A, Jo O, Abe S, et al. Characterization of placenta-specific microRNAs in fetal growth restriction pregnancy. Prenat Diagn. 2013;33:214–22.

    Article  CAS  PubMed  Google Scholar 

  33. Guo L, Tsai SQ, Hardison NE, James AH, Motsinger-Reif AA, Thames B, et al. Differentially expressed microRNAs and affected biological pathways revealed by modulated modularity clustering (MMC) analysis of human preeclamptic and IUGR placentas. Placenta. 2013;34:599–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang Q, Wu W, Xu X, Huang L, Gao Q, Chen H, et al. miR-141 contributes to fetal growth restriction by regulating PLAG1 expression. PLoS ONE. 2013;8:e58737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hromadnikova I, Kotlabova K, Hympanova L, Krofta L Cardiovascular and cerebrovascular disease associated microRNAs are dysregulated in placental tissues affected with gestational hypertension, preeclampsia and intrauterine growth restriction. PLoS ONE.2015;10:e0138383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Maccani MA, Padbury JF, Marsit CJ. miR-16 and miR-21 expression in the placenta is associated with fetal growth. PLoS ONE. 2011;6:e21210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hromadnikova I, Kotlabova K, Ondrackova M, Pirkova P, Kestlerova A, Novotna V, et al. Expression profile of C19MC microRNAs in placental tissue in pregnancy-related complications. DNA Cell Biol. 2015;34:437–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang L, Deng X, Shi X, Dong X. Silencing H19 regulated proliferation, invasion, and autophagy in the placenta by targeting miR‐18a‐5p. J Cell Biochem. 2019;120:9006–15.

    Article  CAS  PubMed  Google Scholar 

  39. Hromadnikova I, Kotlabova K, Ivankova K, Vedmetskaya Y, Krofta L. Profiling of cardiovascular and cerebrovascular disease associated microRNA expression in umbilical cord blood in gestational hypertension, preeclampsia and fetal growth restriction. Int J Cardiol. 2017;249:402–9.

    Article  PubMed  Google Scholar 

  40. Rodosthenous RS, Burris HH, Sanders AP, Just AC, Dereix AE, Svensson K, et al. Second trimester extracellular microRNAs in maternal blood and fetal growth: An exploratory study. Epigenetics. 2017;12:804–10.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Östling H, Kruse R, Helenius G, Lodefalk M. Placental expression of microRNAs in infants born small for gestational age. Placenta. 2019;81:46–53.

    Article  PubMed  CAS  Google Scholar 

  42. Mas-Parés B, Xargay-Torrent S, Bonmatí A, Lizarraga-Mollinedo E, Martínez-Calcerrada JM, Carreras-Badosa G, et al. Umbilical cord miRNAs in small-for-gestational-age children and association with catch-up growth: a pilot study. J Clin Endocrinol Metab. 2019;104:5285–98.

    Article  PubMed  Google Scholar 

  43. Whitehead CL, Teh WT, Walker SP, Leung C, Larmour L, Tong S. Circulating MicroRNAs in maternal blood as potential biomarkers for fetal hypoxia in-utero. PLoS ONE. 2013;8:e78487.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang D, Na Q, Song WW, Song GY. Altered expression of miR-518b and miR-519a in the placenta is associated with low fetal birth weight. Am J Perinatol. 2014;31:729–34.

    Article  PubMed  Google Scholar 

  45. Cindrova-Davies T, Herrera EA, Niu Y, Kingdom J, Giussani DA, Burton GJ. Reduced cystathionine γ-lyase and increased miR-21 expression are associated with increased vascular resistance in growth-restricted pregnancies: Hydrogen sulfide as a placental vasodilator. Am J Pathol. 2013;182:1448–58.

    Article  CAS  PubMed  Google Scholar 

  46. Lee DC, Romero R, Kim JS, Tarca AL, Montenegro D, Pineles BL, et al. MiR-210 targets iron-sulfur cluster scaffold homologue in human trophoblast cell lines: Siderosis of interstitial trophoblasts as a novel pathology of preterm preeclampsia and small-for-gestational-age pregnancies. Am J Pathol. 2011;179:590–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tsai P-Y, Li S-H, Chen W-N, Tsai H-L, Su M-T. Differential miR-346 and miR-582-3p expression in association with selected maternal and fetal complications. Int J Mol Sci. 2017;18:1570.

    Article  CAS  PubMed Central  Google Scholar 

  48. Thamotharan S, Chu A, Kempf K, Janzen C, Grogan T, Elashoff DA, et al. Differential microRNA expression in human placentas of term intra-uterine growth restriction that regulates target genes mediating angiogenesis and amino acid transport. PLoS ONE. 2017;12:e0176493.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hromadnikova I, Kotlabova K, Hympanova L, Krofta L. Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripheral blood. Thromb Res. 2016;137:126–40.

    Article  CAS  PubMed  Google Scholar 

  50. Huang L, Shen Z, Xu Q, Huang X, Chen Q, Li D. Increased levels of microRNA-424 are associated with the pathogenesis of fetal growth restriction. Placenta. 2013;34:624–7.

    Article  CAS  PubMed  Google Scholar 

  51. Kim SH, MacIntyre DA, Binkhamis R, Cook J, Sykes L, Bennett PR, et al. Maternal plasma miRNAs as potential biomarkers for detecting risk of small-for-gestational-age births. EBioMedicine. 2020;62:103145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tagliaferri S, Cepparulo P, Vinciguerra A, Campanile M, Esposito G, Maruotti GM, et al. miR-16-5p, miR-103-3p, and miR-27b-3p as early peripheral biomarkers of fetal growth restriction. Front Pediatr. 2021;9:156.

    Article  Google Scholar 

  53. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian MicroRNA targets. Cell. 2003;115:787–98.

    Article  CAS  PubMed  Google Scholar 

  54. Kuhn DE, Martin MM, Feldman DS, Terry AV, Nuovo GJ, Elton TS. Experimental validation of miRNA targets. Methods. 2008;44:47–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Williams KC, Renthal NE, Gerard RD, Mendelson CR. The microRNA (miR)-199a/214 cluster mediates opposing effects of progesterone and estrogen on uterine contractility during pregnancy and labor. Mol Endocrinol. 2012;26:1857–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Luo R, Shao X, Xu P, Liu Y, Wang Y, Zhao Y, et al. MicroRNA-210 contributes to preeclampsia by downregulating potassium channel modulatory factor 1. Hypertension. 2014;64:839–45.

    Article  CAS  PubMed  Google Scholar 

  57. Hu TX, Wang G, Guo XJ, Sun QQ, He P, Gu H, et al. MiR 20a,-20b and -200c are involved in hydrogen sulfide stimulation of VEGF production in human placental trophoblasts. Placenta. 2016;39:101–10.

    Article  PubMed  CAS  Google Scholar 

  58. Luo R, Wang Y, Xu P, Cao G, Zhao Y, Shao X, et al. Hypoxia-inducible miR-210 contributes to preeclampsia via targeting thrombospondin type I domain containing 7A. Sci Rep. 2016;6:19588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schneider C, Kässens N, Greve B, Hassan H, Schüring AN, Starzinski-Powitz A, et al. Targeting of syndecan-1 by micro-ribonucleic acid miR-10b modulates invasiveness of endometriotic cells via dysregulation of the proteolytic milieu and interleukin-6 secretion. Fertil Steril. 2013;99:871–81.

    Article  CAS  PubMed  Google Scholar 

  60. Colleoni F, Padmanabhan N, Yung HWA, Watson ED, Cetin I, Tissot van Patot MC, et al. Suppression of mitochondrial electron transport chain function in the hypoxic human placenta: a role for miRNA-210 and protein synthesis inhibition. PLoS ONE. 2013;8:e55194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Takizawa T, Ishibashi O, Ohkuchi A, Moksed Ali M, Kurashina R, Luo SS, et al. Hydroxysteroid (17-β) dehydrogenase 1 is dysregulated by miR-210 and miR-518c that are aberrantly expressed in preeclamptic placentas: A novel marker for predicting preeclampsia. Hypertension. 2012;59:265–73.

    Article  PubMed  CAS  Google Scholar 

  62. Meruvu S, Zhang J, Bedi YS, Choudhury M. Mono-(2-ethylhexyl) phthalate induces apoptosis through miR-16 in human first trimester placental cell line HTR-8/SVneo. Toxicol Vitr. 2016;31:35–42.

    Article  CAS  Google Scholar 

  63. Liu M, Wang Y, Lu H, Wang H, Shi X, Shao X, et al. miR-518b enhances human trophoblast cell proliferation through targeting Rap1b and activating Ras-MAPK signal. Front Endocrinol. 2018;9:100.

    Article  Google Scholar 

  64. Dominguez F, Moreno-Moya JM, Lozoya T, Romero A, Martínez S, Monterde M, et al. Embryonic miRNA profiles of normal and ectopic pregnancies. PLoS One. 2014;9:e102185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Zhu X, Yang Y, Han T, Yin G, Gao P, Ni Y, et al. Suppression of microRNA-18a expression inhibits invasion and promotes apoptosis of human trophoblast cells by targeting the estrogen receptor α gene. Mol Med Rep. 2015;12:2701–6.

    Article  CAS  PubMed  Google Scholar 

  66. Wang Y, Fan H, Zhao G, Liu D, Du L, Wang Z, et al. MiR-16 inhibits the proliferation and angiogenesis-regulating potential of mesenchymal stem cells in severe pre-eclampsia. FEBS J. 2012;279:4510–24.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Y, Fei M, Xue G, Zhou Q, Jia Y, Li L, et al. Elevated levels of hypoxia-inducible microRNA-210 in pre-eclampsia: new insights into molecular mechanisms for the disease. J Cell Mol Med. 2012;16:249–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang W, Feng L, Zhang H, Hachy S, Satohisa S, Laurent LC, et al. Preeclampsia up-regulates angiogenesis-associated microRNA (i.e., miR-17, -20a, and -20b) that target ephrin-B2 and EPHB4 in human placenta. J Clin Endocrinol Metab. 2012;97:E1051–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dai L, Gu L, Di W. MiR-199a attenuates endometrial stromal cell invasiveness through suppression of the IKKβ/nf-κb pathway and reduced interleukin-8 expression. Mol Hum Reprod. 2012;18:136–45.

    Article  CAS  PubMed  Google Scholar 

  70. Qiu C, Chen G, Cui Q. Towards the understanding of microRNA and environmental factor interactions and their relationships to human diseases. Sci Rep. 2012;2:318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Khorram O, Han G, Bagherpour R, Magee TR, Desai M, Ross MG, et al. Effect of maternal undernutrition on vascular expression of micro and messenger RNA in newborn and aging offspring. Am J Physiol Integr Comp Physiol. 2010;298:R1366–74.

    Article  CAS  Google Scholar 

  72. Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ, et al. A MicroRNA Signature of Hypoxia. Mol Cell Biol. 2007;27:1859–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McConnell BB, Yang VW. Mammalian Kruppel-like factors in health and diseases. Physiol Rev. 2010;90:1337–81.

    Article  CAS  PubMed  Google Scholar 

  74. Mouillet J-F, Donker RB, Mishima T, Cronqvist T, Chu T, Sadovsky Y. The unique expression and function of miR-424 in human placental trophoblasts. Biol Reprod. 2013;89:25–1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32:D277–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang ZZ, Tschopp O, Hemmings-Mieszczak M, Feng J, Brodbeck D, Perentes E, et al. Protein kinase Bα/Akt1 regulates placental development and fetal growth. J Biol Chem. 2003;278:32124–31.

    Article  CAS  PubMed  Google Scholar 

  77. Kent LN, Ohboshi S, Soares MJ. Akt1 and insulin-like growth factor 2 (Igf2) regulate placentation and fetal/postnatal development. Int J Dev Biol. 2012;56:255–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Plaks V, Berkovitz E, Vandoorne K, Berkutzki T, Damari GM, Haffner R, et al. Survival and size are differentially regulated by placental and fetal PKBalpha/AKT1 in mice. Biol Reprod. 2011;84:537–45.

    Article  CAS  PubMed  Google Scholar 

  79. Costanzo V, Bardelli A, Siena S, Abrignani S. Exploring the links between cancer and placenta development. Open Biol. 2018;8:180081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ferretti C, Bruni L, Dangles-Marie V, Pecking AP, Bellet D. Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum Reprod Update. 2007;13:121–41.

    Article  CAS  PubMed  Google Scholar 

  81. Greijer AE. The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol. 2004;57:1009–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fiedler U, Augustin HG. Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol. 2006;27:552–8.

    Article  CAS  PubMed  Google Scholar 

  83. De Falco M, Fedele V, Cobellis L, Mastrogiacomo A, Giraldi D, Leone S, et al. Pattern of expression of cyclin D1/CDK4 complex in human placenta during gestation. Cell Tissue Res. 2004;317:187–94.

    Article  PubMed  CAS  Google Scholar 

  84. Chen D, Zheng J. Regulation of placental angiogenesis. Microcirculation. 2014;21:15–25.

  85. Murphy VE, Smith R, Giles WB, Clifton VL. Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr Rev. 2006;27:141–69.

    Article  PubMed  Google Scholar 

  86. Malhotra A, Allison BJ, Castillo-Melendez M, Jenkin G, Polglase GR, Miller SL. Neonatal morbidities of fetal growth restriction: pathophysiology and impact. Front Endocrinol. 2019;10:55.

    Article  Google Scholar 

  87. Birdir C, Droste L, Fox L, Frank M, Fryze J, Enekwe A, et al. Predictive value of sFlt-1, PlGF, sFlt-1/PlGF ratio and PAPP-A for late-onset preeclampsia and IUGR between 32 and 37 weeks of pregnancy. Pregnancy Hypertens. 2018;12:124–8.

    Article  CAS  PubMed  Google Scholar 

  88. Hudler P, Kocevar N, Komel R. Proteomic approaches in biomarker discovery: new perspectives in cancer diagnostics. Sci World J. 2014;2014:1–18.

    Article  CAS  Google Scholar 

  89. Backes C, Meese E, Keller A. Specific miRNA disease biomarkers in blood, serum and plasma: challenges and prospects. Mol Diagnosis Ther. 2016;20:509–18.

    Article  CAS  Google Scholar 

  90. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    Article  CAS  PubMed  Google Scholar 

  91. Mouillet JF, Ouyang Y, Coyne CB, Sadovsky Y. MicroRNAs in placental health and disease. Am J Obstet Gynecol. 2015;213:S163–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chiofalo B, Laganà AS, Vaiarelli A, La Rosa VL, Rossetti D, Palmara V. Do miRNAs play a role in fetal growth restriction? A fresh look to a busy corner. Biomed Res Int. 2017;2017:1–8.

    Article  CAS  Google Scholar 

  93. Ghosh G, Subramanian IV, Adhikari N, Zhang X, Joshi HP, Basi D, et al. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. J Clin Investig. 2010;120:4141–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand ephrin-A3. J Biol Chem. 2008;283:15878–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xu X, Zhang F, Chen X, Ying Q. MicroRNA-518b functions as a tumor suppressor in Glioblastoma by targeting PDGFRB. Mol Med Rep. 2017;16:5326–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang W, Lu Z, Zhi Z, Liu L, Deng L, Jiang X, et al. Increased miRNA-518b inhibits trophoblast migration and angiogenesis by targeting EGR1 in early embryonic arrest. Biol Reprod. 2019;101:664–74.

    Article  PubMed  Google Scholar 

  97. Abdelmohsen K, Srikantan S, Kuwano Y, Gorospe M. miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. Proc Natl Acad Sci USA. 2008;105:20297–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cha ST, Chen PS, Johansson G, Chu CY, Wang MY, Jeng YM, et al. MicroRNA-519c suppresses hypoxia-inducible factor-1α expression and tumor angiogenesis. Cancer Res. 2010;70:2675–85.

    Article  CAS  PubMed  Google Scholar 

  99. Celic T, Meuth V, Six I, Massy Z, Metzinger L. The mir-221/222 cluster is a key player in vascular biology via the fine-tuning of endothelial cell physiology. Curr Vasc Pharmacol. 2016;15:40–6.

    Article  CAS  Google Scholar 

  100. Chen Y, Gelfond JAL, McManus LM, Shireman PK. Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis. BMC Genom. 2009;10:407.

    Article  CAS  Google Scholar 

  101. Li P, Piao Y, Shon HS, Ryu KH. Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data. BMC Bioinform. 2015;16:347.

    Article  CAS  Google Scholar 

  102. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  103. VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques. 2008;44:619–26.

    Article  CAS  PubMed  Google Scholar 

  104. Hummer RA. Racial differentials in infant mortality in the u.s.: an examination of social and health determinants. Soc Forces. 1993;72:529–54.

    Article  Google Scholar 

  105. Wen SW, Kramer MS, Usher RH. Comparison of birth weight distributions between Chinese and Caucasian infants. Am J Epidemiol. 1995;141:1177–87.

    Article  CAS  PubMed  Google Scholar 

  106. Dai L, Deng C, Li Y, Zhu J, Mu Y, Deng Y, et al. Birth weight reference percentiles for Chinese. PLoS ONE. 2014;9:e104779.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Alexander GR, Himes JH, Kaufman RB, Mor J, Kogan M. A united states national reference for fetal growth. Obstet Gynecol. 1996;87:163–8.

    Article  CAS  PubMed  Google Scholar 

  108. Dobbins TA, Sullivan EA, Roberts CL, Simpson JM. Australian national birthweight percentiles by sex and gestational age, 1998–2007. Med J Aust. 2012;197:291–4.

    Article  PubMed  Google Scholar 

  109. Kramer MS, Platt RW, Wen SW, Joseph KS, Allen A, Abrahamowicz M, et al. A New and Improved population-based Canadian reference for birth weight for gestational age. Pediatrics. 2001;108:e35.

    Article  CAS  PubMed  Google Scholar 

  110. Lee HC, Ramachandran P, Madan A. Morbidity risk at birth for asian indian small for gestational age infants. Am J Public Health. 2010;100:820–2.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Huang RS, Gamazon ER, Ziliak D, Wen Y, Im HK, Zhang W, et al. Population differences in microRNA expression and biological implications. RNA Biol. 2011;8:692–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Podolska A, Kaczkowski B, Litman T, Fredholm M, Cirera S. How the RNA isolation method can affect microRNA microarray results. Acta Biochim Pol. 2011;58:535–40.

    Article  CAS  PubMed  Google Scholar 

  113. Hammerle-Fickinger A, Riedmaier I, Becker C, Meyer HHD, Pfaffl MW, Ulbrich SE. Validation of extraction methods for total RNA and miRNA from bovine blood prior to quantitative gene expression analyses. Biotechnol Lett. 2009;32:35–44.

    Article  PubMed  CAS  Google Scholar 

  114. Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, et al. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. Rna. 2010;16:991–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, et al. Housekeeping genes as internal standards: use and limits. J Biotechnol. 1999;75:291–5.

    Article  CAS  PubMed  Google Scholar 

  116. Chapman JR, Waldenström J. With reference to reference genes: a systematic review of endogenous controls in gene expression studies. PLoS ONE. 2015;10:e0141853.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Masè M, Grasso M, Avogaro L, D’Amato E, Tessarolo F, Graffigna A, et al. Selection of reference genes is critical for miRNA expression analysis in human cardiac tissue. A focus on atrial fibrillation. Sci Rep. 2017;7:41127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Wei S, Xu H, Kuang Y. Systematic enrichment analysis of microRNA expression profiling studies in endometriosis. Iran J Basic Med Sci. 2015;18:423–9.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Women Scientist Scheme, Department of Science & Technology, Government of India to PK (Reference no. SR/WOS-A/LS-669/2016) and the Department of Biotechnology, Government of India grants to AM (Grant sanction nos. BT/PR22326/MED/97/349/2016 and BT/PR30276/MED/97/399/2018).

Author information

Authors and Affiliations

Authors

Contributions

All authors planned and designed the study. RR and PK were involved in registering of the study protocol and selection of studies. PK and MV analysed data from the selected studies. PK, MV, and AM drafted and edited the article. All authors read and approved the final version of the systematic review for submission.

Corresponding author

Correspondence to A. Mukhopadhyay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochhar, P., Vukku, M., Rajashekhar, R. et al. microRNA signatures associated with fetal growth restriction: a systematic review. Eur J Clin Nutr 76, 1088–1102 (2022). https://doi.org/10.1038/s41430-021-01041-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-021-01041-x

This article is cited by

Search

Quick links