Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Santos syndrome is caused by mutation in the WNT7A gene

Abstract

We have recently described a family with a condition (Santos syndrome (SS; MIM 613005)) characterized by fibular agenesis/hypoplasia, hypoplastic femora and grossly malformed/deformed clubfeet with severe oligodactyly, ungual hypoplasia/anonychia, sometimes associated with mild brachydactyly and occasional pre-axial polydactyly. Autosomal dominant inheritance with incomplete penetrance was suggested, but autosomal recessive inheritance could not be ruled out, due to the high frequency of consanguineous matings in the region where the family lived. This report deals with linkage studies and exome sequencing, disclosing a novel variant in WNT7A, c.934G>A (p.Gly312Ser), as the cause of this syndrome. This variant was present in homozygous state in five individuals typically affected by the SS syndrome, and in heterozygous state in the son of one affected homozygous individual. The heterozygous boy presented only unilateral complex polysyndactyly and we hypothesize that he either presents a distinct defect or that his phenotype results from a rare, mild clinical manifestation of the variant in heterozygous state. Variants in WNT7A are known to cause at least two other limb defect disorders, the syndromes of Fuhrmann and Al-Awadi/Raas-Rothschild. Despite their variable degree of expressivity and overlap, the three related conditions can be differentiated phenotypically in most instances.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3

References

  1. 1

    Santos, S. C., Pardono, E., Ferreira da Costa, M. I., de Melo, A. N., Graciani, Z., de Albuquerque e Souza, A. C. et al. A previously undescribed syndrome combining fibular agenesis/hypoplasia, oligodactylous clubfeet, anonychia/ungual hypoplasia, and other defects. Am. J. Med. Genet. A 146A, 3126–3131 (2008).

    Article  Google Scholar 

  2. 2

    Lewin, S. O. & Opitz, J. M. Fibular a/hypoplasia: review and documentation of the fibular developmental field. Am. J. Med. Genet. Suppl. 2, 215–238 (1986).

    CAS  Article  Google Scholar 

  3. 3

    Genuardi, M., Zollino, M., Bellussi, A., Fuhrmann, W. & Neri, G. Brachy/ectrodactyly and absence or hypoplasia of the fibula: an autosomal dominant condition with low penetrance and variable expressivity. Clin. Genet. 38, 321–326 (1990).

    CAS  Article  Google Scholar 

  4. 4

    Evans, J. A., Reed, M. H. & Greenberg, C. R. Fibular aplasia with ectrodactyly. Am. J. Med. Genet. 113, 52–58 (2002).

    Article  Google Scholar 

  5. 5

    Fuhrmann, W., Fuhrmann-Rieger, A. & de Sousa, F. Poly-, syn- and oligodactyly, aplasia or hypoplasia of fibula, hypoplasia of pelvis and bowing of femora in three sibs—a new autosomal recessive syndrome. Eur. J. Pediatr. 133, 123–129 (1980).

    CAS  Article  Google Scholar 

  6. 6

    Fuhrmann, W., Fuhrmann-Rieger, A., Jovanović, V. & Rehder, H. A new autosomal recessive skeletal dysplasia syndrome—prenatal diagnosis and histopathology. Prog. Clin. Biol. Res. 104, 519–524 (1982).

    CAS  PubMed  Google Scholar 

  7. 7

    Pfeiffer, R. A., Stöss, H., Voight, H. J. & Wündisch, G. F. Absence of fibula and ulna with oligodactyly, contractures, right-angle bowing of femora, abnormal facial morphology, cleft lip/palate and brain malformation in two sibs: a possibly new lethal syndrome. Am. J. Med. Genet. 29, 901–908 (1988).

    CAS  Article  Google Scholar 

  8. 8

    Woods, C. G., Stricker, S., Seemann, P., Stern, R., Cox, J., Sherridan, E. et al. Mutations in WNT7A cause a range of limb malformations, including Fuhrmann syndrome and Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome. Am. J. Hum. Genet. 79, 402–408 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Santos, S., Kok, F., Weller, M., de Paiva, F. R. & Otto, P. A. Inbreeding levels in Northeast Brazil: strategies for the prospecting of new genetic disorders. Genet. Mol. Biol. 33, 220–223 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Weller, M., Tanieri, M., Pereira, J. C., Almeida Edos, S., Kok, F. & Santos, S. Consanguineous unions and the burden of disability: a population-based study in communities of Northeastern Brazil. Am. J. Hum. Biol. 24, 835–840 (2012).

    Article  Google Scholar 

  11. 11

    Abecasis, G. R., Cherny, S. S., Cookson, W. O. & Cardon, L. R. Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30, 97–101 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  Article  Google Scholar 

  13. 13

    McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  Google Scholar 

  15. 15

    Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Ng, P. C. & Henikoff, S. Predicting the effects of amino acid substitutions on protein function. Annu. Rev. Genomics Hum. Genet. 7, 61–80 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Choi, Y., Sims, G. E., Murphy, S., Miller, J. R. & Chan, A. P. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7, e46688 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Schwarz, J. M., Cooper, D. N., Schuelke, M. & Seelow, D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat. Methods 11, 361–362 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Niswander, L. Pattern formation: old models out on a limb. Nat. Rev. Genet. 4, 133–143 (2003).

    CAS  Article  Google Scholar 

  20. 20

    Niswander, L., Jeffrey, S., Martin, G. R. & Tickle, C. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 371, 609–612 (1994).

    CAS  Article  Google Scholar 

  21. 21

    Sun, X., Mariani, F. V. & Martin, G. R. Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418, 501–508 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Tickle, C. The number of polarizing region cells required to specify additional digits in the developing chick wing. Nature 289, 295–298 (1981).

    CAS  Article  Google Scholar 

  23. 23

    Riddle, R. D., Johnson, R. L., Laufer, E. & Tabin, C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416 (1993).

    CAS  Article  Google Scholar 

  24. 24

    Zúñiga, A., Haramis, A. P., McMahon, A. P. & Zeller, R. Signal relay by BMP antagonism controls the SHH/FGF4 feedback loop in vertebrate limb buds. Nature 401, 598–602 (1999).

    Article  Google Scholar 

  25. 25

    Riddle, R. D., Ensini, M., Nelson, C., Tsuchida, T., Jessell, T. M. & Tabin, C. Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb. Cell 83, 631–640 (1995).

    CAS  Article  Google Scholar 

  26. 26

    Parr, B. A. & McMahon, A. P. Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 374, 350–353 (1995).

    CAS  Article  Google Scholar 

  27. 27

    Garavelli, L., Wischmeijer, A., Rosato, S., Gelmini, C., Reverberi, S., Sassi, S. et al. Al-Awadi-Raas-Rothschild (limb/pelvis/uterus-hypoplasia/aplasia) syndrome and WNT7A mutations: genetic homogeneity and nosological delineation. Am. J. Med. Genet. A 155A, 332–336 (2011).

    Article  Google Scholar 

  28. 28

    Kantaputra, P. N., Mundlos, S. & Sripathomsawat, W. A novel homozygous Arg222Trp missense mutation in WNT7A in two sisters with severe Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome. Am. J. Med. Genet. A 152A, 2832–2837 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Al-Qattan, M. M., Al-Abdulkareem, I., Ballow, M. & Al Balwi, M. A report of two cases of Al-Awadi Raas-Rothschild syndrome (AARRS) supporting that ‘apparent’ phocomelia differentiates AARRS from Schinzel phocomelia syndrome (SPS). Gene 527, 371–375 (2013).

    CAS  Article  Google Scholar 

  30. 30

    Eyaid, W., Al-Qattan, M. M., Al Abdulkareem, I., Fetaini, N. & Al Balwi, M. A novel homozygous missense mutation (c.610G>A, p.Gly204Ser) in the WNT7A gene causes tetra-amelia in two Saudi families. Am. J. Med. Genet. A 155A, 599–604 (2011).

    Article  Google Scholar 

  31. 31

    Al-Qattan, M. M., Shamseldin, H. E. & Alkuraya, F. S. The WNT7A G204S mutation is associated with both Al-Awadi-Raas Rothschild syndrome and Fuhrmann syndrome phenotypes. Gene 516, 168–170 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Wang, B., Sinha, T., Jiao, K., Serra, R. & Wang, J. Disruption of PCP signaling causes limb morphogenesis and skeletal defects and may underlie Robinow syndrome and brachydactyly type B. Hum. Mol. Genet. 20, 271–285 (2011).

    CAS  Article  Google Scholar 

  33. 33

    Al-Qattan, M. M. Molecular basis of the clinical features of Al-Awadi-Raas-Rothschild (limb/pelvis/uterus-hypoplasia/aplasia) syndrome (AARRS) and Fuhrmann syndrome. Am. J. Med. Genet. A 161A, 2274–2280 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Temtamy, S. A. & McKusick, V. A. The genetics of hand malformations. Birth Defects Orig. Artic. Ser. 14: i-xviii, 1–619 (1978).

    Google Scholar 

Download references

Acknowledgements

We thank Mr Guilherme Yamamoto for assistance in bioinformatics; Dr Carla Rosenberg and Silvia S Costa for array-CGH experiments and exome library preparation; Dr Angela M Vianna-Morgante and Dr Bernd Wollnik (from Universitätsmedizin Göttingen, Göttingen, Germany) for helpful discussions. We also thank CEPID-FAPESP (Centro de Estudos do Genoma humano e Células-tronco, 2013/08028-1) and CAPES for the financial support, and the patients for their cooperation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Regina C Mingroni-Netto.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Journal of Human Genetics website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alves, L., Santos, S., Musso, C. et al. Santos syndrome is caused by mutation in the WNT7A gene. J Hum Genet 62, 1073–1078 (2017). https://doi.org/10.1038/jhg.2017.86

Download citation

Further reading

Search

Quick links