Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adipocyte and Cell Biology

SIRT1 and SIRT7 expression in adipose tissues of obese and normal-weight individuals is regulated by microRNAs but not by methylation status

Subjects

Abstract

Background/Objective:

Given their importance in the regulation of metabolism, sirtuins (SIRTs) constitute promising subjects of research on the pathogenesis of obesity and the metabolic syndrome. The aim of this study was to assess whether obesity in humans is associated with changes in the expression of SIRT genes in adipose tissue and whether epigenetic mechanisms, DNA methylation and microRNA (miRNA) interference, mediate in this phenomenon.

Subjects/Methods:

The expression of SIRTs and of SIRT1 and SIRT7 mRNA-interacting miRNAs was evaluated by real-time PCR in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) of 58 obese (body mass index (BMI) >40 kg m−2) and 31 normal-weight (BMI 20–24.9 kg m−2) individuals. The methylation status of SIRTs was studied by the methylation-sensitive digestion/real-time PCR method.

Results:

SIRT1 mRNA levels were lower in adipose tissues of obese patients than of normal-weight controls (VAT: P=0.0002, SAT: P=0.008). In contrast, expression of SIRT7 was higher in adipose tissues of obese patients than in the control group (VAT: P=0.001, SAT: P=0.008). The mean methylation of the SIRT1 and SIRT7 CpG islands was similar in tissues with high and low expression of these genes, and there was no correlation between the level of expression and the level of methylation. On the other hand, expression of SIRT1 in VAT of obese subjects correlated negatively with the expression of miR-22-3p (P<0.0001, rs=−0.514), miR-34a-5p (P=0.01, rs=−0.326) and miR-181a-3p (P<0.0001, rs=−0.536). In turn, expression of SIRT7 in VAT of slim individuals correlated negatively with the expression of miR-125a-5p (P=0.003, rs=−0.562) and miR-125b-5p (P=0.018, rs=−0.460).

Conclusions:

We observed obesity-associated downregulation of SIRT1 and upregulation of SIRT7 mRNA levels that were not associated with the methylation status of their promoters. We found a negative correlation between mRNA levels of SIRT1 in VAT of obese individuals and SIRT7 in VAT of the normal-weight subjects and expression of the relevant miRNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A . Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal 2013; 25: 1939–1948.

    Article  CAS  Google Scholar 

  2. Cheung KG, Cole LK, Xiang B, Chen K, Ma X, Myal Y et al. Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. J Biol Chem 2015; 290: 10981–10993.

    Article  CAS  Google Scholar 

  3. Kiran S, Oddi V, Ramakrishna G . Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response. Exp Cell Res 2015; 331: 123–141.

    Article  CAS  Google Scholar 

  4. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I . Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 2005; 16: 4623–4635.

    Article  CAS  Google Scholar 

  5. Zakhary SM, Ayubcha D, Dileo JN, Jose R, Leheste JR, Horowitz JM et al. Distribution analysis of deacetylase SIRT1 in rodent and human nervous systems. Anat Rec (Hoboken) 2010; 293: 1024–1032.

    Article  CAS  Google Scholar 

  6. Moschen AR, Wieser V, Gerner RR, Bichler A, Enrich B, Moser P et al. Adipose tissue and liver expression of SIRT1, 3, and 6 increase after extensive weight loss in morbid obesity. J Hepatol 2013; 59: 1315–1322.

    Article  CAS  Google Scholar 

  7. Caton PW, Richardson SJ, Kieswich J, Bugliani M, Holland ML, Marchetti P et al. Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients. Diabetologia 2013; 56: 1068–1077.

    Article  CAS  Google Scholar 

  8. Acs Z, Bori Z, Takeda M, Osvath P, Berkes I, Taylor AW et al. High altitude exposure alters gene expression levels of DNA repair enzymes, and modulates fatty acid metabolism by SIRT4 induction in human skeletal muscle. Respir Physiol Neurobiol 2014; 196: 33–37.

    Article  CAS  Google Scholar 

  9. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004; 429: 771–776.

    Article  CAS  Google Scholar 

  10. Chakrabarti P, Kandror KV . FoxO1 controls insulin-dependent adipose triglyceride lipase (ATGL) expression and lipolysis in adipocytes. J Biol Chem 2009; 284: 13296–13300.

    Article  CAS  Google Scholar 

  11. Yoshizaki T, Milne JC, Imamura T, Schenk S, Sonoda N, Babendure JL et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol 2009; 29: 1363–1374.

    Article  CAS  Google Scholar 

  12. Jing E, Gesta S, Kahn CR . SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab 2007; 6: 105–114.

    Article  CAS  Google Scholar 

  13. Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010; 464: 121–125.

    Article  CAS  Google Scholar 

  14. Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell 2013; 50: 919–930.

    Article  CAS  Google Scholar 

  15. Ahuja N, Schwer B, Carobbio S, Waltregny D, North BJ, Castronovo V et al. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J Biol Chem 2007; 282: 33583–33592.

    Article  CAS  Google Scholar 

  16. Zhong L, D'Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 2010; 140: 280–293.

    Article  CAS  Google Scholar 

  17. Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L . Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 2006; 20: 1075–1080.

    Article  CAS  Google Scholar 

  18. Tsai YC, Greco TM, Cristea IM . Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis. Mol Cell Proteomics 2014; 13: 73–83.

    Article  CAS  Google Scholar 

  19. Chen S, Seiler J, Santiago-Reichelt M, Felbel K, Grummt I, Voit R . Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol Cell 2013; 52: 303–313.

    Article  CAS  Google Scholar 

  20. Cioffi M, Vallespinos-Serrano M, Trabulo SM, Fernandez-Marcos PJ, Firment AN, Vazquez BN et al. MiR-93 controls adiposity via inhibition of Sirt7 and Tbx3. Cell Rep 2015; 12: 1594–1605.

    Article  CAS  Google Scholar 

  21. Gillum MP, Kotas ME, Erion DM, Kursawe R, Chatterjee P, Nead KT et al. SirT1 regulates adipose tissue inflammation. Diabetes 2011; 60: 3235–3245.

    Article  CAS  Google Scholar 

  22. Hirschey MD, Shimazu T, Jing E, Grueter CA, Collins AM, Aouizerat B et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell 2011; 44: 177–190.

    Article  CAS  Google Scholar 

  23. Um JH, Park SJ, Kang H, Yang S, Foretz M, McBurney MW et al. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 2010; 59: 554–563.

    Article  CAS  Google Scholar 

  24. Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschöp MH . Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci USA 2008; 105: 9793–9798.

    Article  CAS  Google Scholar 

  25. Banks AS, Kon N, Knight C, Matsumoto M, Gutiérrez-Juárez R, Rossetti L et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 2008; 8: 333–341.

    Article  CAS  Google Scholar 

  26. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006; 444: 337–342.

    Article  CAS  Google Scholar 

  27. Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007; 450: 712–716.

    Article  CAS  Google Scholar 

  28. Kelly G . A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1. Altern Med Rev 2010; 15: 245–263.

    PubMed  Google Scholar 

  29. Kelly GS . A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 2. Altern Med Rev 2010; 15: 313–328.

    PubMed  Google Scholar 

  30. van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS, Members of EpiSCOPE. Epigenetics and human obesity. Int J Obes (Lond) 2015; 39: 85–97.

    Article  CAS  Google Scholar 

  31. Yamakuchi M, Ferlito M, Lowenstein CJ . miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA 2008; 105: 13421–13426.

    Article  CAS  Google Scholar 

  32. Zhang S, Zhang D, Yi C, Wang Y, Wang H, Wang J . MicroRNA-22 functions as a tumor suppressor by targeting SIRT1 in renal cell carcinoma. Oncol Rep 2015; 35: 559–567.

    Article  Google Scholar 

  33. Zhou B, Li C, Qi W, Zhang Y, Zhang F, Wu JX et al. Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia 2012; 55: 2032–2043.

    Article  CAS  Google Scholar 

  34. Kim JK, Noh JH, Jung KH, Eun JW, Bae HJ, Kim MG et al. Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b. Hepatology 2013; 57: 1055–1067.

    Article  CAS  Google Scholar 

  35. Kurylowicz A, Jonas M, Lisik W, Jonas M, Wicik ZA, Wierzbicki Z et al. Obesity is associated with a decrease in expression but not with the hypermethylation of thermogenesis-related genes in adipose tissues. J Transl Med 2015; 13: 31.

    Article  Google Scholar 

  36. Jonas MI, Kurylowicz A, Bartoszewicz Z, Lisik W, Jonas M, Wierzbicki Z et al. Interleukins 6 and 15 levels are higher in subcutaneous adipose tissue, but obesity is associated with their increased content in visceral fat depots. Int J Mol Sci 2015; 16: 25817–25830.

    Article  CAS  Google Scholar 

  37. Neville MJ, Collins JM, Gloyn AL, McCarthy MI, Karpe F . Comprehensive human adipose tissue mRNA and microRNA endogenous control selection for quantitative real-time-PCR normalization. Obesity (Silver Spring) 2011; 19: 888–892.

    Article  CAS  Google Scholar 

  38. Mukaka MM . Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med J 2012; 24: 69–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Caton PW, Kieswich J, Yaqoob MM, Holness MJ, Sugden MC . Metformin opposes impaired AMPK and SIRT1 function and deleterious changes in core clock protein expression in white adipose tissue of genetically-obese db/db mice. Diabetes Obes Metab 2011; 13: 1097–1104.

    Article  CAS  Google Scholar 

  40. Buler M, Aatsinki SM, Izzi V, Hakkola J . Metformin reduces hepatic expression of SIRT3, the mitochondrial deacetylase controlling energy metabolism. PLoS One 2012; 7: e49863.

    Article  CAS  Google Scholar 

  41. Buler M, Aatsinki SM, Izzi V, Uusimaa J, Hakkola J . SIRT5 is under the control of PGC-1α and AMPK and is involved in regulation of mitochondrial energy metabolism. FASEB J 2014; 28: 3225–3237.

    Article  CAS  Google Scholar 

  42. Huang C, Chen D, Xie Q, Yang Y, Shen W . Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2013; 438: 211–217.

    Article  CAS  Google Scholar 

  43. Marampon F, Gravina GL, Scarsella L, Festuccia C, Lovat F, Ciccarelli C et al. Angiotensin-converting-enzyme inhibition counteracts angiotensin II-mediated endothelial cell dysfunction by modulating the p38/SirT1 axis. J Hypertens 2013; 31: 1972–1983.

    Article  CAS  Google Scholar 

  44. Kawai H, Kurata T, Deguchi K, Deguchi S, Yamashita T, Ohta Y et al. Combination benefit of amlodipine plus atorvastatin treatment on carotid atherosclerosis in Zucker metabolic rats. Neurol Res 2013; 35: 181–186.

    Article  CAS  Google Scholar 

  45. de las Heras N, Valero-Muñoz M, Ballesteros S, Gómez-Hernández A, Martín-Fernández B, Blanco-Rivero J et al. Factors involved in rosuvastatin induction of insulin sensitization in rats fed a high fat diet. Nutr Metab Cardiovasc Dis 2013; 23: 1107–1114.

    Article  CAS  Google Scholar 

  46. Pedersen SB, Ølholm J, Paulsen SK, Bennetzen MF, Richelsen B . Low Sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women. Int J Obes (Lond) 2008; 32: 1250–1255.

    Article  CAS  Google Scholar 

  47. Song YS, Lee SK, Jang YJ, Park HS, Kim JH, Lee YJ et al. Association between low SIRT1 expression in visceral and subcutaneous adipose tissues and metabolic abnormalities in women with obesity and type 2 diabetes. Diabetes Res Clin Pract 2013; 101: 341–348.

    Article  CAS  Google Scholar 

  48. Yoshizawa T, Karim MF, Sato Y, Senokuchi T, Miyata K, Fukuda T et al. SIRT7 controls hepatic lipid metabolism by regulating the ubiquitin-proteasome pathway. Cell Metab 2014; 19: 712–721.

    Article  CAS  Google Scholar 

  49. Bober E, Fang J, Smolka C, Ianni A, Vakhrusheva O, Krüger M et al. Sirt7 promotes adipogenesis by binding to and inhibiting Sirt1. BMC Proc 2012; 6: p 57.

    Article  Google Scholar 

  50. Hammond SM . An overview of microRNAs. Adv Drug Deliv Rev 2015; 87: 3–14.

    Article  CAS  Google Scholar 

  51. McGregor RA, Choi MS . microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med 2011; 11: 304–316.

    Article  CAS  Google Scholar 

  52. Alexander R, Lodish H, Sun L . MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opin Ther Targets 2011; 15: 623–636.

    Article  CAS  Google Scholar 

  53. Xie H, Lim B, Lodish HF . MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009; 58: 1050–1057.

    Article  CAS  Google Scholar 

  54. Lee J, Kemper JK . Controlling SIRT1 expression by microRNAs in health and metabolic disease. Aging (Albany NY) 2010; 2: 527–534.

    Article  CAS  Google Scholar 

  55. Ortega FJ, Moreno-Navarrete JM, Pardo G, Sabater M, Hummel M, Ferrer A et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One 2010; 5: e9022.

    Article  Google Scholar 

  56. Huang S, Wang S, Bian C, Yang Z, Zhou H, Zeng Y et al. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev 2012; 21: 2531–2540.

    Article  CAS  Google Scholar 

  57. Li H, Chen X, Guan L, Qi Q, Shu G, Jiang Q et al. MiRNA-181a regulates adipogenesis by targeting tumor necrosis factor-α (TNF-α) in the porcine model. PLoS One 2013; 8: e71568.

    Article  CAS  Google Scholar 

  58. Diawara MR, Hue C, Wilder SP, Venteclef N, Aron-Wisnewsky J, Scott J et al. Adaptive expression of microRNA-125a in adipose tissue in response to obesity in mice and men. PLoS One 2014; 9: e91375.

    Article  Google Scholar 

  59. Ferdowsi S, Atarodi K, Amirizadeh N, Toogeh G, Azarkeivan A, Shirkoohi R et al. Expression analysis of microRNA-125 in patients with polycythemia vera and essential thrombocythemia and correlation with JAK2 allele burden and laboratory findings. Int J Lab Hematol 2015; 37: 661–667.

    Article  CAS  Google Scholar 

  60. Ortega FJ, Mercader JM, Catalán V, Moreno-Navarrete JM, Pueyo N, Sabater M et al. Targeting the circulating microRNA signature of obesity. Clin Chem 2013; 59: 781–792.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research received funding from the National Science Centre Poland (Grant 2012/05/B/NZ5/01536).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Kurylowicz or M Puzianowska-Kuznicka.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurylowicz, A., Owczarz, M., Polosak, J. et al. SIRT1 and SIRT7 expression in adipose tissues of obese and normal-weight individuals is regulated by microRNAs but not by methylation status. Int J Obes 40, 1635–1642 (2016). https://doi.org/10.1038/ijo.2016.131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2016.131

This article is cited by

Search

Quick links