Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pediatrics

Serum 25-Hydroxyvitamin D associated with indicators of body fat and insulin resistance in prepubertal chilean children

Abstract

Background:

Consistent data on the relation between vitamin D, body fat and insulin resistance (IR) in children are lacking.

Objectives:

(1) To evaluate the association between serum 25-Hydroxyvitamin D [25(OH)D] and key indicators of: adiposity (total and central), IR, and (2) to estimate serum 25(OH)D cut-offs that best reflect IR and total and central adiposity in children.

Subjects/Methods:

Prepubertal children (n=435, ~53% girls; ~age 7 years) from the Growth and Obesity Chilean Cohort Study were evaluated for potential associations between serum 25(OH)D and indicators of: (1) total adiposity (body mass index by age (BAZ), body fat (including three-component model)), central adiposity (waist circumference and trunk fatness); (2) IR (homeostasis model assessment of IR) and insulin sensitive (quantitative insulin sensitivity check index) using standardized multiple regression models with standardized coefficients and receiver operating characteristic curves.

Results:

Overall, mean serum 25(OH)D was 32.1±9.2 ng ml−1, while 19.4% of children were obese (BAZ2 s.d.). Serum 25(OH)D was inversely associated with indicators of total and central adiposity and with IR indicators. Effect sizes were moderate in girls (~0.3 for adiposity and IR indicators), while, weaker values were found in boys. Serum 25(OH)D estimated cut-offs that best predicted total, central adiposity and IR were~30 ng ml−1. Children with suboptimal serum 25(OH)D (<30 ng ml−1) had a higher risk (two to three times) of being obese (high BAZ, body fat percent and/or central adiposity); and three to four times greater risk for IR.

Conclusions:

Serum 25(OH)D was inversely associated with adiposity (total and central) and IR indicators in prepubertal Chilean children. The conventional cut-off of vitamin D sufficiency (30 ng ml−1) was adequate to assess obesity and IR risk in this age group.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Prentice A, Schoenmakers I, Laskey MA, de Bono S, Ginty F, Goldberg GR . Nutrition and bone growth and development. Proc Nutr Soc 2006; 65: 348–360.

    Article  CAS  Google Scholar 

  2. Wamberg L, Christiansen T, Paulsen SK, Fisker S, Rask P, Rejnmark L et al. Expression of vitamin D-metabolizing enzymes in human adipose tissue-the effect of obesity and diet-induced weight loss. Int J Obes (Lond) 2013; 37: 651–657.

    Article  CAS  Google Scholar 

  3. Bischoff HA, Borchers M, Gudat F, Duermueller U, Theiler R, Stahelin HB et al. In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J 2001; 33: 19–24.

    Article  CAS  Google Scholar 

  4. Johnson JA, Grande JP, Roche PC, Kumar R . Immunohistochemical localization of the 1,25(OH)2D3 receptor and calbindin D28k in human and rat pancreas. Am J Physiol 1994; 267: E356–E360.

    CAS  PubMed  Google Scholar 

  5. Christakos S, Hewison M, Gardner DG, Wagner CL, Sergeev IN, Rutten E et al. Vitamin D: beyond bone. Ann N Y Acad Sci 2013; 1287: 45–58.

    Article  CAS  Google Scholar 

  6. Ding C, Gao D, Wilding J, Trayhurn P, Bing C . Vitamin D signalling in adipose tissue. Br J Nutr 2012; 108: 1915–1923.

    Article  CAS  Google Scholar 

  7. Khaw K-T, Luben R, Wareham N . Serum 25-hydroxyvitamin D, mortality, and incident cardiovascular disease, respiratory disease, cancers, and fractures: a 13-y prospective population study. Am J Clin Nutr 2014; 100: 1361–1370.

    Article  CAS  Google Scholar 

  8. Song Y, Wang L, Pittas AG, Del Gobbo LC, Zhang C, Manson JE et al. Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care 2013; 36: 1422–1428.

    Article  CAS  Google Scholar 

  9. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF . Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000; 72: 690–693.

    Article  CAS  Google Scholar 

  10. George PS, Pearson ER, Witham MD . Effect of vitamin D supplementation on glycaemic control and insulin resistance: a systematic review and meta-analysis. Diabet Med 2012; 29: e142–e150.

    Article  CAS  Google Scholar 

  11. Lenders CM, Feldman HA, Von Scheven E, Merewood A, Sweeney C, Wilson DM et al. Relation of body fat indexes to vitamin D status and deficiency among obese adolescents. Am J Clin Nutr 2009; 90: 459–467.

    Article  CAS  Google Scholar 

  12. Elizondo-Montemayor L, Ugalde-Casas PA, Serrano-González M, Cuello-García CA, Borbolla-Escoboza JR . Serum 25-hydroxyvitamin d concentration, life factors and obesity in Mexican children. Obesity (Silver Spring) 2010; 18: 1805–1811.

    Article  CAS  Google Scholar 

  13. Gilbert-Diamond D, Baylin A, Mora-Plazas M, Marin C, Arsenault JE, Hughes MD et al. Vitamin D deficiency and anthropometric indicators of adiposity in school-age children: a prospective study. Am J Clin Nutr 2010; 92: 1446–1451.

    Article  CAS  Google Scholar 

  14. Alemzadeh R, Kichler J, Babar G, Calhoun M . Hypovitaminosis D in obese children and adolescents: relationship with adiposity, insulin sensitivity, ethnicity, and season. Metabolism 2008; 57: 183–191.

    Article  CAS  Google Scholar 

  15. Reis JP, von Mühlen D, Miller ER, Michos ED, Appel LJ . Vitamin D status and cardiometabolic risk factors in the United States adolescent population. Pediatrics 2009; 124: e371–e379.

    Article  Google Scholar 

  16. Reyman M, Verrijn Stuart AA, van Summeren M, Rakhshandehroo M, Nuboer R, de Boer FK et al. Vitamin D deficiency in childhood obesity is associated with high levels of circulating inflammatory mediators, and low insulin sensitivity. Int J Obes (Lond) 2013; 38: 46–52.

    Article  Google Scholar 

  17. Oliveira RMS, Novaes JF, Azeredo LM, Azeredo LM, Cândido APC, Leite ICG . Association of vitamin D insufficiency with adiposity and metabolic disorders in Brazilian adolescents. Public Health Nutr 2014; 17: 787–794.

    Article  Google Scholar 

  18. Kelly A, Brooks LJ, Dougherty S, Carlow DC, Zemel BS . A cross-sectional study of vitamin D and insulin resistance in children. Arch Dis Child 2011; 96: 447–452.

    Article  Google Scholar 

  19. Garanty-Bogacka B, Syrenicz M, Goral J, Krupa B, Syrenicz J, Walczak M et al. Serum 25-hydroxyvitamin D (25-OH-D) in obese adolescents. Endokrynol Pol 2011; 62: 506–511.

    CAS  PubMed  Google Scholar 

  20. Kolokotroni O, Papadopoulou A, Yiallouros PK, Raftopoulos V, Kouta C, Lamnisos D et al. Association of vitamin D with adiposity measures and other determinants in a cross-sectional study of Cypriot adolescents. Public Health Nutr 2014; 18: 112–121.

    Article  Google Scholar 

  21. Creo AL, Rosen JS, Ariza AJ, Hidaka KM, Binns HJ . Vitamin D levels, insulin resistance, and cardiovascular risks in very young obese children. J Pediatr Endocrinol Metab 2013; 26: 97–104.

    Article  CAS  Google Scholar 

  22. Poomthavorn P, Saowan S, Mahachoklertwattana P, Chailurkit L, Khlairit P . Vitamin D status and glucose homeostasis in obese children and adolescents living in the tropics. Int J Obes (Lond) 2012; 36: 491–495.

    Article  CAS  Google Scholar 

  23. Aypak C, Türedi O, Yüce A . The association of vitamin D status with cardiometabolic risk factors, obesity and puberty in children. Eur J Pediatr 2014; 173: 367–373.

    Article  CAS  Google Scholar 

  24. Wells JC, Fuller NJ, Dewit O, Fewtrell MS, Elia M, Cole TJ . Four-component model of body composition in children: density and hydration of fat-free mass and comparison with simpler models. Am J Clin Nutr 1999; 69: 904–912.

    Article  CAS  Google Scholar 

  25. Delvin EE, Lambert M, Levy E, O’Loughlin J, Mark S, Gray-Donald K et al. Vitamin D status is modestly associated with glycemia and indicators of lipid metabolism in French-Canadian children and adolescents. J Nutr 2010; 140: 987–991.

    Article  CAS  Google Scholar 

  26. Roth CL, Elfers C, Kratz M, Hoofnagle AN . Vitamin d deficiency in obese children and its relationship to insulin resistance and adipokines. J Obes 2011; 2011: 495101.

    Article  Google Scholar 

  27. Jang HB, Lee H-J, Park JY, Kang J-H, Song J . Association between serum vitamin d and metabolic risk factors in korean schoolgirls. Osong Public Health Res Perspect 2013; 4: 179–186.

    Article  Google Scholar 

  28. Torun E, Gönüllü E, Ozgen IT, Cindemir E, Oktem F . Vitamin d deficiency and insufficiency in obese children and adolescents and its relationship with insulin resistance. Int J Endocrinol 2013; 2013: 631845.

    Article  Google Scholar 

  29. Gutiérrez-Medina S, Gavela-Pérez T, Domínguez-Garrido MN, Blanco-Rodríguez M, Garcés C, Rovira A et al. High prevalence of vitamin D deficiency among spanish obese children and adolescents. An Pediatr (Barc) 2014; 80: 229–235.

    Article  Google Scholar 

  30. Gutiérrez Medina S, Gavela-Pérez T, Domínguez-Garrido MN, Gutiérrez-Moreno E, Rovira A, Garcés C et al. The influence of puberty on vitamin D status in obese children and the possible relation between vitamin D deficiency and insulin resistance. J Pediatr Endocrinol Metab 2015; 28: 105–110.

    Article  Google Scholar 

  31. Khadgawat R, Thomas T, Gahlot M, Tandon N, Tangpricha V, Khandelwal D et al. The effect of puberty on interaction between vitamin D status and insulin resistance in obese Asian-Indian Children. Int J Endocrinol 2012; 2012: 173581.

    Article  Google Scholar 

  32. Buyukinan M, Ozen S, Kokkun S, Saz EU . The relation of vitamin D deficiency with puberty and insulin resistance in obese children and adolescents. J Pediatr Endocrinol Metab 2012; 25: 83–87.

    Article  CAS  Google Scholar 

  33. Zerwekh JE . Blood biomarkers of vitamin D status. Am J Clin Nutr 2008; 87: 1087S–1091S.

    Article  CAS  Google Scholar 

  34. Pearce SHS, Cheetham TD . Diagnosis and management of vitamin D deficiency. BMJ 2010; 340: b5664.

    Article  Google Scholar 

  35. Bouillon R, Van Schoor NM, Gielen E, Boonen S, Mathieu C, Vanderschueren D et al. Optimal vitamin D status: a critical analysis on the basis of evidence-based medicine. J Clin Endocrinol Metab 2013; 98: E1283–E1304.

    Article  CAS  Google Scholar 

  36. Rosen CJ, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA et al. IOM committee members respond to Endocrine Society vitamin D guideline. J Clin Endocrinol Metab 2012; 97: 1146–1152.

    Article  CAS  Google Scholar 

  37. Kain J, Corvalán C, Lera L, Galván M, Uauy R . Accelerated growth in early life and obesity in preschool Chilean children. Obesity (Silver Spring) 2009; 17: 1603–1608.

    Article  Google Scholar 

  38. Faul F, Erdfelder E, Buchner A, Lang A-G . Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 2009; 41: 1149–1160.

    Article  Google Scholar 

  39. WHO Multicentre Growth Reference Study Group. Reliability of anthropometric measurements in the WHO Multicentre Growth Reference Study. Acta Paediatr Suppl 2006; 450: 38–46.

    Google Scholar 

  40. Child Growth WHO . Standards based on length/height, weight and age. Acta Paediatr Suppl 2006; 450: 76–85.

    Google Scholar 

  41. Fuller NJ, Jebb SA, Laskey MA, Coward WA, Elia M . Four-component model for the assessment of body composition in humans: comparison with alternative methods, and evaluation of the density and hydration of fat-free mass. Clin Sci (Lond) 1992; 82: 687–693.

    Article  CAS  Google Scholar 

  42. Fernández JR, Redden DT, Pietrobelli A, Allison DB . Waist circumference percentiles in nationally representative samples of African-American, European-American, and Mexican-American children and adolescents. J Pediatr 2004; 145: 439–444.

    Article  Google Scholar 

  43. Corvalán C, Uauy R, Kain J, Martorell R . Obesity indicators and cardiometabolic status in 4-y-old children. Am J Clin Nutr 2010; 91: 166–174.

    Article  Google Scholar 

  44. Salvatore D, Satnick A, Abell R, Messina CR, Chawla A . The prevalence of abnormal metabolic parameters in obese and overweight children. JPEN J Parenter Enteral Nutr 2014; 38: 852–855.

    Article  CAS  Google Scholar 

  45. Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C . Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics 2005; 115: e500–e503.

    Article  Google Scholar 

  46. Dirección Meteorologica de Chile. Available at: http://www.meteochile.gob.cl.

  47. Tanner JM . The measurement of maturity. Trans Eur Orthod Soc 1975: 45–60.

  48. Pereira A, Garmendia ML, González D, Kain J, Mericq V, Uauy R et al. Breast bud detection: a validation study in the Chilean Growth Obesity Cohort Study. BMC Womens Health 2014; 14: 96.

    Article  Google Scholar 

  49. Fawcett T . An introduction to ROC analysis. Pattern Recognit Lett 2006; 27: 861–874.

    Article  Google Scholar 

  50. Drincic AT, Armas LAG, Van Diest EE, Heaney RP . Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity (Silver Spring) 2012; 20: 1444–1448.

    Article  CAS  Google Scholar 

  51. Hannon TS, Janosky J, Arslanian SA . Longitudinal study of physiologic insulin resistance and metabolic changes of puberty. Pediatr Res 2006; 60: 759–763.

    Article  CAS  Google Scholar 

  52. Sharifi F, Mousavinasab N, Mellati AA . Defining a cutoff point for vitamin D deficiency based on insulin resistance in children. Diabetes Metab Syndr 2013; 7: 210–213.

    Article  Google Scholar 

  53. Nam GE, Kim DH, Cho KH, Park YG, Han K, Do, Choi YS et al. Estimate of a predictive cut-off value for serum 25-hydroxyvitamin D reflecting abdominal obesity in Korean adolescents. Nutr Res 2012; 32: 395–402.

    Article  CAS  Google Scholar 

  54. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96: 1911–1930.

    Article  CAS  Google Scholar 

  55. Heaney RP, Dowell MS, Hale CA, Bendich A . Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J Am Coll Nutr 2003; 22: 142–146.

    Article  CAS  Google Scholar 

  56. Holick MF, Siris ES, Binkley N, Beard MK, Khan A, Katzer JT et al. Prevalence of Vitamin D inadequacy among postmenopausal North American women receiving osteoporosis therapy. J Clin Endocrinol Metab 2005; 90: 3215–3224.

    Article  CAS  Google Scholar 

  57. Aghajafari F, Nagulesapillai T, Ronksley PE, Tough SC, O’Beirne M, Rabi DM . Association between maternal serum 25-hydroxyvitamin D level and pregnancy and neonatal outcomes: systematic review and meta-analysis of observational studies. BMJ 2013; 346: f1169.

    Article  Google Scholar 

  58. Garland CF, Kim JJ, Mohr SB, Gorham ED, Grant WB, Giovannucci EL et al. Meta-analysis of all-cause mortality according to serum 25-hydroxyvitamin D. Am J Public Health 2014; 104: e43–e50.

    Article  Google Scholar 

  59. Wells JC . Sexual dimorphism of body composition. Best Pract Res Clin Endocrinol Metab 2007; 21: 415–430.

    Article  Google Scholar 

Download references

Acknowledgements

GC did this work as part of his doctoral thesis in Human Nutrition at the University of Chile, he wrote the first draft; CC and RU contributed in interpreting the data; all authors were involved in analyzing results and reviewing the paper. We thank the study personnel and GOCS participants that continue to collaborate with our research. Supported by FONDECYT grant no 1120326 (CC), grant no 1110085 (DLdR). GC is beneficiary of a PhD scholarship from Government of Chile (Conicyt, Development of Human Capital Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Corvalán.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cediel, G., Corvalán, C., Aguirre, C. et al. Serum 25-Hydroxyvitamin D associated with indicators of body fat and insulin resistance in prepubertal chilean children. Int J Obes 40, 147–152 (2016). https://doi.org/10.1038/ijo.2015.148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2015.148

Search

Quick links