Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates

Abstract

Adeno-associated virus (AAV) vectors have been a powerful gene delivery vehicle to the retina for basic research and gene therapy. For many of these applications, achieving cell type-specific targeting and high transduction efficiency is desired. Recently, there has been increasing interest in AAV-mediated gene targeting to specific retinal bipolar cell types. A 200-bp enhancer in combination with a basal SV40 promoter has been commonly used to target transgenes into ON-type bipolar cells. In the current study, we searched for additional cis-regulatory elements in the mGluR6 gene for improving AAV-mediated transduction efficiency into retinal bipolar cells. Our results showed that the combination of the endogenous mGluR6 promoter with additional enhancers in the introns of the mGluR6 gene markedly enhanced AAV transduction efficiency as well as made the targeting more selective for rod bipolar cells in mice. Furthermore, the AAV vectors with the improved promoter could target to ON bipolar cells with robust transduction efficiency in the parafovea and the far peripheral retina of marmoset monkeys. The improved mGluR6 promoter constructs could provide a valuable tool for genetic manipulation in rod bipolar cells in mice and facilitate clinical applications for ON bipolar cell-based gene therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zhu Y, Xu J, Hauswirth WW, DeVries SH . Genetically targeted binary labeling of retinal neurons. J Neurosci 2014; 34: 7845–7861.

    Article  Google Scholar 

  2. Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 2008; 358: 2240–2248.

    Article  CAS  Google Scholar 

  3. Boye SE, Boye SL, Lewin AS, Hauswirth WW . A comprehensive review of retinal gene therapy. Mol Ther 2013; 21: 509–519.

    Article  CAS  Google Scholar 

  4. Trapani I, Puppo A, Auricchio A . Vector platforms for gene therapy of inherited retinopathies. Prog Retin Eye Res 2014; 43: 108–128.

    Article  CAS  Google Scholar 

  5. Vandenberghe LH, Auricchio A . Novel adeno-associated viral vectors for retinal gene therapy. Gene Therapy 2012; 19: 162–168.

    Article  CAS  Google Scholar 

  6. Euler T, Haverkamp S, Schubert T, Baden T . Retinal bipolar cells: elementary building blocks of vision. Nat Rev Neurosci 2014; 15: 507–519.

    Article  CAS  Google Scholar 

  7. Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 2006; 50: 23–33.

    Article  CAS  Google Scholar 

  8. Lagali PS, Balya D, Awatramani GB, Munch TA, Kim DS, Busskamp V et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 2008; 11: 667–675.

    Article  CAS  Google Scholar 

  9. Busskamp V, Picaud S, Sahel JA, Roska B . Optogenetic therapy for retinitis pigmentosa. Gene Therapy 2012; 19: 169–175.

    Article  CAS  Google Scholar 

  10. Pan Z-H, Lu Q, Bi A, Dizhoor AM, Abrams GW . Optogenetic approaches to restoring vision. Annu Rev Vis Sci 2015; 1: 185–210.

    Article  Google Scholar 

  11. Ueda Y, Iwakabe H, Masu M, Suzuki M, Nakanishi S . The mGluR6 5’ upstream transgene sequence directs a cell-specific and developmentally regulated expression in retinal rod and ON-type cone bipolar cells. J Neurosci 1997; 17: 3014–3023.

    Article  CAS  Google Scholar 

  12. Morgan JL, Dhingra A, Vardi N, Wong RO . Axons and dendrites originate from neuroepithelial-like processes of retinal bipolar cells. Nat Neurosci 2006; 9: 85–92.

    Article  CAS  Google Scholar 

  13. Dhingra A, Sulaiman P, Xu Y, Fina ME, Veh RW, Vardi N . Probing neurochemical structure and function of retinal ON bipolar cells with a transgenic mouse. J Comp Neurol 2008; 510: 484–496.

    Article  CAS  Google Scholar 

  14. Kim DS, Matsuda T, Cepko CL . A core paired-type and POU homeodomain-containing transcription factor program drives retinal bipolar cell gene expression. J Neurosci 2008; 28: 7748–7764.

    Article  CAS  Google Scholar 

  15. Doroudchi MM, Greenberg KP, Liu J, Silka KA, Boyden ES, Lockridge JA et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther 2011; 19: 1220–1229.

    Article  CAS  Google Scholar 

  16. Cronin T, Vandenberghe LH, Hantz P, Juttner J, Reimann A, Kacsó AE et al. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol Med 2014; 6: 1175–1190.

    Article  CAS  Google Scholar 

  17. Mace E, Caplette R, Marre O, Sengupta A, Chaffiol A, Barbe P et al. Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Mol Ther 2015; 23: 7–16.

    Article  CAS  Google Scholar 

  18. Dalkara D, Kolstad KD, Caporale N, Visel M, Klimczak RR, Schaffer DV et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther 2009; 17: 2096–2102.

    Article  CAS  Google Scholar 

  19. Petrs-Silva H, Dinculescu A, Li Q, Deng WT, Pang JJ, Min SH et al. Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 2011; 19: 293–301.

    Article  CAS  Google Scholar 

  20. Lu Q, Ivanova E, Ganjawala HT, Pan Z-H . Cre-mediated recombination efficiency and transgene expression patterns of three retinal bipolar cell-expressing Cre transgenic mouse lines. Mol Vis 2013; 19: 1310–1320.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Butler JE, Kadonaga JT . The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev 2002; 16: 2583–2592.

    Article  CAS  Google Scholar 

  22. Papadakis ED, Nicklin SA, Baker AH, White SJ . Promoters and control elements: designing expression cassettes for gene therapy. Curr Gene Ther 2004; 4: 89–113.

    Article  CAS  Google Scholar 

  23. Pennacchio LA, Bickmore W, Dean A, Nobrega MA, Bejerano G . Enhancers: five essential questions. Nat Rev Genet 2013; 14: 288–295.

    Article  CAS  Google Scholar 

  24. Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 2009; 457: 854–858.

    Article  CAS  Google Scholar 

  25. Petrs-Silva H, Dinculescu A, Li Q, Min SH, Chiodo V, Pang JJ et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 2009; 17: 463–471.

    Article  CAS  Google Scholar 

  26. Greferath U, Grünert U, Wässle H . Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. J Comp Neurol 1990; 301: 433–442.

    Article  CAS  Google Scholar 

  27. Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L, Merigan WH et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 2013; 5: 189ra76.

    Article  Google Scholar 

  28. Huang L, Max M, Margolskee RF, Su H, Masland RH, Euler T . G protein subunit Gγ13 is coexpressed with Gαo, Gβ3, and Gβ4 in retinal ON bipolar cells. J Comp Neurol 2003; 455: 1–10.

    Article  CAS  Google Scholar 

  29. Chan TL, Martin PR, Clunas N, Grünert U . Bipolar cell diversity in the primate retina: morphologic and immunocytochemical analysis of a new world monkey, the marmoset Callithrix jacchus. J Comp Neurol 2001; 437: 219–239.

    Article  CAS  Google Scholar 

  30. Weltzien F, Percival KA, Martin PR, Grünert U . Analysis of bipolar and amacrine populations in marmoset retina. J Comp Neurol 2015; 523: 313–334.

    Article  CAS  Google Scholar 

  31. Surace EM, Auricchio A . Versatility of AAV vectors for retinal gene transfer. Vis Res 2008; 48: 353–359.

    Article  CAS  Google Scholar 

  32. de Leeuw CN, Dyka FM, Boye SL, Laprise S, Zhou M, Chou AY et al. Targeted CNS delivery using human MiniPromoters and demonstrated compatibility with adeno-associated viral vectors. Mol Ther Methods Clin Dev 2014; 1: 5.

    Article  Google Scholar 

  33. Scalabrino ML, Boye SL, Fransen KM, Noel JM, Dyka FM, Min SH et al. Intravitreal delivery of a novel AAV vector targets ON bipolar cells and restores visual function in a mouse model of complete congenital stationary night blindness. Hum Mol Genet 2015; 24: 6229–6239.

    Article  CAS  Google Scholar 

  34. Wässle H, Puller C, Müller F, Haverkamp S . Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J Neurosci 2009; 29: 106–117.

    Article  Google Scholar 

  35. Strettoi E, Pignatelli V . Modifications of retinal neurons in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci USA 2000; 97: 11020–11025.

    Article  CAS  Google Scholar 

  36. Hibino H, Tani K, Ikebuchi K, Wu MS, Sugiyama H, Nakazaki Y et al. The common marmoset as a target preclinical primate model for cytokine and gene therapy studies. Blood 1999; 93: 2839–2848.

    CAS  PubMed  Google Scholar 

  37. t’Hart BA, Vervoordeldonk M, Heeney JL, Tak PP . Gene therapy in nonhuman primate models of human autoimmune disease. Gene Therapy 2003; 10: 890–901.

    Article  Google Scholar 

  38. Ivanova E, Hwang GS, Pan ZH, Troilo D . Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. Investig Ophthalmol Vis Sci 2010; 51: 5288–5296.

    Article  Google Scholar 

  39. Baba Y, Satoh S, Otsu M, Sasaki E, Okada T, Watanabe S . In vitro cell subtype-specific transduction of adeno-associated virus in mouse and marmoset retinal explant culture. Biochimie 2012; 94: 2716–2822.

    Article  CAS  Google Scholar 

  40. Troilo D, Howland HC, Judge SJ . Visual optics and retinal cone topography in the common marmoset (Callithrix jacchus. Vision Res 1993; 33: 1301–1310.

    Article  CAS  Google Scholar 

  41. Goodchild AK, Ghosh KK, Martin PR . Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus. J Comp Neurol 1996; 366: 55–75.

    Article  CAS  Google Scholar 

  42. Wilder HD, Grunert U, Lee BB, Martin PR . Topography of ganglion cells and photoreceptors in the retina of a New World monkey: the marmoset Callithrix jacchus. Vis Neurosci 1996; 13: 335–352.

    Article  CAS  Google Scholar 

  43. Hendrickson A, Troilo D, Djajadi H, Possin D, Springer A . Expression of synaptic and phototransduction markers during photoreceptor development in the marmoset monkey Callithrix jacchus. J Comp Neurol 2009; 512: 218–231.

    Article  CAS  Google Scholar 

  44. Hendrickson A, Troilo D, Possin D, Springer A . Development of the neural retina and its vasculature in the marmoset Callithrix jacchus. J Comp Neurol 2006; 497: 270–286.

    Article  Google Scholar 

  45. Cehajic-Kapetanovic J, Eleftheriou C, Allen AE, Milosavljevic N, Pienaar A, Bedford R et al. Restoration of vision with ectopic expression of human rod opsin. Curr Biol 2015; 25: 2111–2122.

    Article  CAS  Google Scholar 

  46. Gaub BM, Berry MH, Holt AE, Reiner A, Kienzler MA, Dolgova N et al. Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells. Proc Natl Acad Sci USA 2014; 111: E5574–E5583.

    Article  CAS  Google Scholar 

  47. Gaub BM, Berry MH, Holt AE, Isacoff EY, Flannery JG . Optogenetic vision restoration using rhodopsin for enhanced sensitivity. Mol Ther 2015; 23: 1562–1571.

    Article  CAS  Google Scholar 

  48. Yin L, Greenberg K, Hunter JJ, Dalkara D, Kolstad KD, Masella BD et al. Intravitreal injection of AAV2 transduces macaque inner retina. Investig Ophthalmol Vis Sci 2011; 52: 2775–2783.

    Article  CAS  Google Scholar 

  49. Kay CN, Ryals RC, Aslanidi GV, Min SH, Ruan Q, Sun J et al. Targeting photoreceptors via intravitreal delivery using novel, capsid-mutated AAV vectors. PLoS One 2013; 8: e62097.

    Article  CAS  Google Scholar 

  50. Aslanidi GV, Rivers AE, Ortiz L, Song L, Ling C, Govindasamy L et al. Optimization of the capsid of recombinant adeno-associated virus 2 (AAV2) vectors: the final threshold? PLoS One 2013; 8: e59142.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (NIH) Grant EY17130 (to Z-HP), Core Grant EY04068 to Department of Anatomy and Cell Biology at Wayne State University, Dryer Foundation, the Ligon Research Center of Vision and Research to Prevent Blindness to Department of Ophthalmology at Wayne State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z-H Pan.

Ethics declarations

Competing interests

Q Lu, TH Ganjawala, JG Cheng and Z-H Pan are inventors of the improved promoter constructs. Z-H Pan services as Scientific Advisor to RetroSense Therapeutics.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Ganjawala, T., Ivanova, E. et al. AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates. Gene Ther 23, 680–689 (2016). https://doi.org/10.1038/gt.2016.42

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2016.42

This article is cited by

Search

Quick links