Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Site promiscuity of coliphage HK022 integrase as a tool for gene therapy

A Corrigendum to this article was published on 02 July 2015

This article has been updated

Abstract

The integrase (Int) encoded by the lambdoid coliphage HK022 targets in its host chromosome a 21 base pair (bp) recombination site termed attB or BOB'. attB comprises two 7 bp partially inverted (palindromic) Int-binding sites of 7 bp each termed B and B'. B and B' flank a central 7 bp crossover site or ‘overlap’ (O). We show that replacing O with a random 7 bp sequence supports Int-mediated site-specific recombination as long as the cognate and larger phage recombination site attP features an identical O sequence. This promiscuity allowed us to identify on the human genome several native active secondary attB sites (‘attB’) with random overlaps that flank human deleterious mutations, raising the prospect of using such sites to cure the ‘attB’-flanked mutations by Int-catalyzed RMCE (recombinase-mediated cassette exchange) reactions. An analysis of such active and inactive ‘attB’s suggested a minimal 14–15 bp attB consensus sequence (instead of the 21 bp) with a reduced 3 bp palindrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Change history

  • 02 July 2014

    This article has been corrected since advance online publication and a corrigendum is also printed in this issue

References

  1. Schlake T, Bode J . Use of mutated Flp recognition target (Frt) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 1994; 33: 12746–12751.

    Article  CAS  Google Scholar 

  2. Turan S, Galla M, Ernst E, Qiao J, Voelkel C, Schiedlmeier B et al. Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol 2011; 407: 193–221.

    Article  CAS  Google Scholar 

  3. Wirth D, Gama-Norton L, Riemer P, Sandhu U, Schucht R, Hauser H . Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biothecnol 2007; 18: 411–419.

    Article  CAS  Google Scholar 

  4. Buchholz F, Stewart AF . Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat Biotechnol 2001; 19: 1047–1052.

    Article  CAS  Google Scholar 

  5. Sarkar I, Hauber I, Hauber J, Buchholz F . HIV-1 proviral DNA excision using an evolved recombinase. Science 2007; 316: 1912–1915.

    Article  CAS  Google Scholar 

  6. Bolusani S, Ma CH, Paek A, Konieczka JH, Jayaram M, Voziyanov Y . Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites. Nucleic Acids Res 2006; 34: 5259–5269.

    Article  CAS  Google Scholar 

  7. Abi-Ghanem J, Chusainow J, Karimova M, Spiegel C, Hofmann-Sieber H, Hauber J et al. Engineering of a target site-specific recombinase by a combined evolution- and structure-guided approach. Nucleic Acids Res 2013; 41: 2394–2403.

    Article  CAS  Google Scholar 

  8. Azaro MA, Landy A . Integrase and the λ int family. In: Craig NL, Craigie R, Gellert M, Lambowitz A (eds). Mobile DNAII. ASM Press: Washington, DC, USA, 2002, pp 118–148.

    Chapter  Google Scholar 

  9. Weisberg RA, Gottesmann ME, Hendrix RW, Little JW . Family values in the age of genomics: comparative analyses of temperate bacteriophage HK022. Annu Rev Genet 1999; 33: 565–602.

    Article  CAS  Google Scholar 

  10. Harel-Levy G, Goltsman J, Tuby CNJH, Yagil E, Kolot M . Human genomic site-specific recombination catalyzed by coliphge HK022 integrase. J Biotechnol 2008; 134: 45–54.

    Google Scholar 

  11. Voziyanova E, Malchin N, Anderson RP, Yagil E, Kolot M, Voziyanov Y . Efficient Flp-Int HK022 dual RMCE in mammalian cells. Nucleic Acids Res 2013; 41: e125.

    Article  CAS  Google Scholar 

  12. Corona T, Bao QY, Christ N, Schwartz T, Li JM, Dröge P . Activation of site-specific DNA integration in human cells by a single chain integration host factor. Nucleic Acids Res 2003; 315: 140–5148.

    Google Scholar 

  13. Malchin N, Tuby CN, Yagil E, Kolot M . Arm site independence of coliphage HK022 integrase in human cells. Mol Genet Genom 2011; 285: 403–413.

    Article  CAS  Google Scholar 

  14. Malchin N, Goltsman J, Dabool L, Gorovits R, Bao Q, Dröge P et al. Optimization of coliphage HK022 integrase activity in human cells. Gene 2009; 437: 9–13.

    Article  CAS  Google Scholar 

  15. Bauer CE, Gardner JF, Gumport RI . Extent of sequence homology required for bacteriophage lambda site-specific recombination. J Mol Biol 1985; 181: 187–197.

    Article  CAS  Google Scholar 

  16. Weisberg RA, Enquist LW, Foeller C, Landy A . Role for DNA homology in site-specific recombination. The isolation and characterization of a site affinity mutant of coliphage lambda. J Mol Biol 1983; 170: 319–342.

    Article  CAS  Google Scholar 

  17. Hoess RH, Wierzbicki A, Abremski K . The role of the loxP spacer region in P1 site-specific recombination. Nucleic Acids Res 1986; 14: 2287–2300.

    Article  CAS  Google Scholar 

  18. Senecoff JF, Cox MM . Directionality in FLP protein-promoted site-specific recombination is mediated by DNA-DNA pairing. J Biol Chem 1986; 261: 7380–7386.

    CAS  PubMed  Google Scholar 

  19. Hansis C, Grifo J . Tay–Sachs disease and preimplantation genetic diagnosis. Adv Genet 2001; 44: 311–315.

    Article  CAS  Google Scholar 

  20. Glaser G, Sarmientos P, Cashel M . Functional interrelationship between two tandem E. coli ribosomal RNA promoters. Nature 1983; 302: 74–76.

    Article  CAS  Google Scholar 

  21. Lavin MF . Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 2008; 9: 759–769.

    Article  CAS  Google Scholar 

  22. Gilad S, Khosravi R, Harnik R, Ziv Y, Shkedy D, Galanty Y et al. Identification of ATM mutations using extended RT-PCR and restriction endonuclease fingerprinting, and elucidation of the repertoire of A-T mutations in Israel. Hum Mutat 1998; 11: 69–75.

    Article  CAS  Google Scholar 

  23. Platzer M, Rotman G, Bauer D, Uziel T, Savitsky K, BarShira A et al. Ataxia-telangiectasia locus: sequence analysis of 184 kb of human genomic DNA containing the entire ATM gene. Genome Res 1997; 7: 592–605.

    Article  CAS  Google Scholar 

  24. Sandoval N, Platzer M, Rosenthal A, Dork T, Bendix R, Skawran B et al. Characterization of ATM gene mutations in 66 ataxia telangiectasia families. Hum Mol Genet 1999; 8: 69–79.

    Article  CAS  Google Scholar 

  25. Sauer B . Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Methods Enzymol 1993; 225: 890–900.

    Article  CAS  Google Scholar 

  26. Yagil E, Dolev S, Oberto J, Kislev N, Ramaiah N, Weisberg RA . Determinants of site-specific recombination in the lambdoid coliphage HK022. An evolutionary change in specificity. J Mol Biol 1989; 207: 695–717.

    Article  CAS  Google Scholar 

  27. Philippe N, Alcaraz JP, Coursange E, Geiselmann J, Schneider D . Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 2004; 51: 246–255.

    Article  CAS  Google Scholar 

  28. Wallace HAC, Marques-Kranc F, Richardson M, Luna-Crespo F, Sharpe JA, Hughes J et al. Manipulating the mouse genome to engineer precise functional synthenic replacements with human sequence. Cell 2007; 128: 197–209.

    Article  CAS  Google Scholar 

  29. Oumard A, Qiao J, Jostock T, Li J, Bode J . Recommended method for chromosome exploitation: RMCE-based cassette-exchange systems in animal cell biotechnology. Cytotechnology 2006; 50: 93–108.

    Article  CAS  Google Scholar 

  30. Cobellis G, Nicolaus G, Iovino M, Romito A, Marra E, Barbarisi M et al. Tagging genes with cassette-exchange sites. Nucleic Acids Res 2005; 33: e44.

    Article  Google Scholar 

  31. Kolot M, Yagil E . Position and direction of strand exchange in bacteriophage HK022 integration. Mol Gen Genet 1994; 245: 623–627.

    Article  CAS  Google Scholar 

  32. Ross W, Landy A . Bacteriophage lambda int protein recognizes two classes of sequence in the phage att site: characterization of arm-type sites. Proc Natl Acad Sci USA 1982; 79: 7724–7728.

    Article  CAS  Google Scholar 

  33. Ross W, Landy A . Patterns of lambda recognition in the regions of strand exchange. Cell 1983; 33: 261–272.

    Article  CAS  Google Scholar 

  34. Mizuuchi M, Mizuuchi K . The extent of DNA sequence required for a functional bacterial attachment site of phage lambda. Nucleic Acids Res 1985; 13: 1193–1208.

    Article  CAS  Google Scholar 

  35. Branda CS, Dymecki SM . Talking about a revolution: Tthe impact of site-specific recombinases on genetic analyses in mice. Dev Cell 2004; 6: 7–28.

    Article  CAS  Google Scholar 

  36. Biswas T, Aihara H, Radman-Livaja M, Filman D, Landy A, Ellenberger T . A structural basis for allosteric control of DNA recombination by lambda integrase. Nature 2005; 435: 1059–1066.

    Article  CAS  Google Scholar 

  37. Steyert SR, Pineiro SA . Development of a novel genetic system to create markerless deletion mutants of Bdellovibrio bacteriovorus. Appl Environ Microbiol 2007; 73: 4717–4724.

    Article  CAS  Google Scholar 

  38. Summers DK, Sherratt DJ . Resolution of ColE1 dimers requires a DNA sequence Implicated in the 3-dimensional organization of the Cer site. EMBO J 1988; 7: 851–858.

    Article  CAS  Google Scholar 

  39. Sambrook J, Fritsch EF, Maniatis T . Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, 1989.

    Google Scholar 

  40. Unger T, Jacobovitch Y, Dantes A, Bernheim R, Peleg Y . Applications of the restriction free (RF) cloning procedure for molecular manipulations and protein expression. J Struct Biol 2010; 172: 34–44.

    Article  CAS  Google Scholar 

  41. Hirt B . Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 1967; 26: 365–369.

    Article  CAS  Google Scholar 

  42. Malchin N, Molotsky T, Yagil E, Kotlyar AB, Kolot M . Molecular analysis of recombinase-mediated cassette exchange reactions catalyzed by integrase of coliphage HK022. Res Microbiol 2008; 159: 663–670.

    Article  CAS  Google Scholar 

  43. Kolot M, Meroz A, Yagil E . Site-specific recombination in human cells catalyzed by the wild-type integrase protein of coliphage HK022. Biotechnol Bioeng 2003; 84: 56–60.

    Article  CAS  Google Scholar 

  44. Yanisch-Perron C, Vieira J, Messing J . Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 1985; 33: 103–119.

    Article  CAS  Google Scholar 

  45. Myerowitz R, Costigan FC . The major defect in Ashkenazi Jews with Tay–Sachs disease is an insertion in the gene for the alpha-chain of beta-hexosaminidase. J Biol Chem 1988; 263: 18587–18589.

    CAS  PubMed  Google Scholar 

  46. Sege-Peterson K, Chambers J, Page T, Jones OW, Nyhan WL . Characterization of mutations in phenotypic variants of hypoxanthine phosphoribosyltransferase deficiency. Hum Mol Genet 1992; 1: 427–432.

    Article  CAS  Google Scholar 

  47. Sun N, Zhao H . Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs. Biotechnol Bioeng 2014; 111: 1048–1053.

    Article  CAS  Google Scholar 

  48. Richardson K, Allen SP, Mortiboys H, Grierson AJ, Wharton SB, Ince PG et al. The effect of SOD1 mutation on cellular bioenergetic profile and viability in response to oxidative stress and influence of mutation-type. PLoS One 2013; 8: e68256.

    Article  CAS  Google Scholar 

  49. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008; 319: 1668–1672.

    Article  CAS  Google Scholar 

  50. Nishimura AL, Mitne-Neto M, Silva HC, Richieri-Costa A, Middleton S, Cascio D et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 2004; 75: 822–831.

    Article  CAS  Google Scholar 

  51. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011; 72: 245–256.

    Article  CAS  Google Scholar 

  52. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011; 72: 257–268.

    Article  CAS  Google Scholar 

  53. Shotelersuk V, Larson D, Anikster Y, McDowell G, Lemons R, Bernardini I et al. CTNS mutations in an American-based population of cystinosis patients. Am J Hum Genet 1998; 63: 352–1362.

    Article  Google Scholar 

Download references

Acknowledgements

Jury Voziyanov kindly supplied and guided us with the Target Finder program and Gabriel Kaufmann assisted us with helpful comments. Research was supported by GIF, the German Israeli Foundation for Scientific Research and development (Grant 1062/2008 to EY and MK), and the Israel Science Foundation (Grant 702/11 to EY and MK).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Kolot or E Yagil.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolot, M., Malchin, N., Elias, A. et al. Site promiscuity of coliphage HK022 integrase as a tool for gene therapy. Gene Ther 22, 521–527 (2015). https://doi.org/10.1038/gt.2015.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.9

This article is cited by

Search

Quick links