Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Long-term efficiency of mesenchymal stromal cell-mediated CD-MSC/5FC therapy in human melanoma xenograft model

Subjects

Abstract

Mesenchymal stromal cells (MSC) can be exploited as cellular delivery vehicles for the enzymes converting non-toxic prodrugs to toxic substances. Because of their inherent chemoresistance, they exert potent bystander and antitumor effect. Here we show that the human adipose tissue-derived MSC expressing fusion yeast cytosine deaminase::uracil phosphoribosyltransferase (CD-MSC) in combination with 5-fluorocytosine (5FC) mediated a long-term tumor-free survival in the 83.3% of tumor-bearing animals. CD-MSC/5FC treatment induced cytotoxicity against model human melanoma cells EGFP-A375. Only 4% of the therapeutic CD-MSC cells eliminated >98.5% of the tumor cells in vitro. Long-term tumor-free survival was confirmed in 15 out of the 18 animals. However, repeatedly used CD-MSC/5FC therapeutic regimen generated more aggressive and metastatic variant of the melanoma cells EGFP-A375/Rel3. These cells derived from the refractory xenotransplants exhibited increased resistance to the CD-MSC/5FC treatment, altered cell adhesion, migration, tumorigenic and metastatic properties. However, long-term curative effect was achieved by the augmentation of the CD-MSC/5FC regimen along with the inhibition of c-Met/hepatocyte growth factor signaling axis in this aggressive melanoma derivative. In summary, the CD-MSC/5FC regimen can be regarded as a very effective antitumor approach to achieve long-term tumor-free survival as demonstrated on a mouse model of aggressive human melanoma xenografts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Portsmouth D, Hlavaty J, Renner M . Suicide genes for cancer therapy. Mol Aspects Med 2007; 28: 4–41.

    Article  CAS  Google Scholar 

  2. Camassola M, de Macedo Braga LM, Chagastelles PC, Nardi NB . Methodology, biology and clinical applications of human mesenchymal stem cells. Methods Mol Biol 2012; 879: 491–504.

    Article  CAS  PubMed  Google Scholar 

  3. Myers TJ, Granero-Molto F, Longobardi L, Li T, Yan Y, Spagnoli A . Mesenchymal stem cells at the intersection of cell and gene therapy. Expert Opin Biol Ther 2010; 10: 1663–1679.

    Article  CAS  PubMed  Google Scholar 

  4. Durinikova E, Kucerova L, Matuskova M . Mesenchymal stromal cells retrovirally transduced with prodrug-converting genes are suitable vehicles for cancer gene therapy. Acta Virol 2014; 58: 1–13.

    Article  CAS  PubMed  Google Scholar 

  5. Schaffler A, Buchler C . Concise review: adipose tissue-derived stromal cells–basic and clinical implications for novel cell-based therapies. Stem Cells 2007; 25: 818–827.

    Article  PubMed  Google Scholar 

  6. Serakinci N, Christensen R, Fahrioglu U, Sorensen FB, Dagnaes-Hansen F, Hajek M et al. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma. Cancer Biother Radiopharm 2011; 26: 767–773.

    Article  CAS  PubMed  Google Scholar 

  7. Cihova M, Altanerova V, Altaner C . Stem cell based cancer gene therapy. Mol Pharm 2011; 8: 1480–1487.

    Article  CAS  PubMed  Google Scholar 

  8. Kucerova L, Poturnajova M, Tyciakova S, Matuskova M . Increased proliferation and chemosensitivity of human mesenchymal stromal cells expressing fusion yeast cytosine deaminase. Stem Cell Res 2012; 8: 247–258.

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Law HK, Lau YL, Chan GC . Differential damage and recovery of human mesenchymal stem cells after exposure to chemotherapeutic agents. Br J Haematol 2004; 127: 326–334.

    Article  CAS  PubMed  Google Scholar 

  10. Liang W, Xia H, Li J, Zhao RC . Human adipose tissue derived mesenchymal stem cells are resistant to several chemotherapeutic agents. Cytotechnology 2011; 63: 523–530.

    Article  CAS  PubMed  Google Scholar 

  11. Uchibori R, Okada T, Ito T, Urabe M, Mizukami H, Kume A et al. Retroviral vector-producing mesenchymal stem cells for targeted suicide cancer gene therapy. J Gene Med 2009; 11: 373–381.

    Article  CAS  Google Scholar 

  12. Matuskova M, Hlubinova K, Pastorakova A, Hunakova L, Altanerova V, Altaner C et al. HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett 2010; 290: 58–67.

    Article  CAS  Google Scholar 

  13. Ryu CH, Park KY, Kim SM, Jeong CH, Woo JS, Hou Y et al. Valproic acid enhances anti-tumor effect of mesenchymal stem cell mediated HSV-TK gene therapy in intracranial glioma. Biochem Biophys Res Commun 2012; 421: 585–590.

    Article  CAS  PubMed  Google Scholar 

  14. Kim SW, Kim SJ, Park SH, Yang HG, Kang MC, Choi YW et al. Complete regression of metastatic renal cell carcinoma by multiple injections of engineered mesenchymal stem cells expressing dodecameric TRAIL and HSV-TK. Clin Cancer Res 2013; 19: 415–427.

    Article  CAS  PubMed  Google Scholar 

  15. Gutova M, Shackleford GM, Khankaldyyan V, Herrmann KA, Shi XH, Mittelholtz K et al. Neural stem cell-mediated CE/CPT-11 enzyme/prodrug therapy in transgenic mouse model of intracerebellar medulloblastoma. Gene Therapy 2013; 20: 143–150.

    Article  CAS  PubMed  Google Scholar 

  16. Gutova M, Najbauer J, Chen MY, Potter PM, Kim SU, Aboody KS . Therapeutic targeting of melanoma cells using neural stem cells expressing carboxylesterase, a CPT-11 activating enzyme. Curr Stem Cell Res Ther 2010; 5: 273–276.

    Article  CAS  PubMed  Google Scholar 

  17. Danks MK, Yoon KJ, Bush RA, Remack JS, Wierdl M, Tsurkan L et al. Tumor-targeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated neuroblastoma. Cancer Res 2007; 67: 22–25.

    Article  CAS  PubMed  Google Scholar 

  18. Matuskova M, Baranovicova L, Kozovska Z, Durinikova E, Pastorakova A, Hunakova L et al. Intrinsic properties of tumour cells have a key impact on the bystander effect mediated by genetically engineered mesenchymal stromal cells. J Gene Med 2012; 14: 776–787.

    Article  CAS  PubMed  Google Scholar 

  19. Longley DB, Harkin DP, Johnston PG . 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003; 3: 330–338.

    Article  CAS  Google Scholar 

  20. Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C . Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 2007; 67: 6304–6313.

    Article  CAS  PubMed  Google Scholar 

  21. Cavarretta IT, Altanerova V, Matuskova M, Kucerova L, Culig Z, Altaner C . Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol Ther 2010; 18: 223–231.

    Article  CAS  Google Scholar 

  22. Kucerova L, Matuskova M, Pastorakova A, Tyciakova S, Jakubikova J, Bohovic R et al. Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J Gene Med 2008; 10: 1071–1082.

    Article  CAS  Google Scholar 

  23. Altanerova V, Cihova M, Babic M, Rychly B, Ondicova K, Mravec B et al. Human adipose tissue-derived mesenchymal stem cells expressing yeast cytosinedeaminase::uracil phosphoribosyltransferase inhibit intracerebral rat glioblastoma. Int J Cancer 2012; 130: 2455–2463.

    Article  CAS  Google Scholar 

  24. Kenessey I, Keszthelyi M, Kramer Z, Berta J, Adam A, Dobos J et al. Inhibition of c-Met with the specific small molecule tyrosine kinase inhibitor SU11274 decreases growth and metastasis formation of experimental human melanoma. Curr Cancer Drug Targets 2010; 10: 332–342.

    Article  CAS  Google Scholar 

  25. van Leenders GJ, Sookhlall R, Teubel WJ, de Ridder CM, Reneman S, Sacchetti A et al. Activation of c-MET induces a stem-like phenotype in human prostate cancer. PLoS One 2011; 6: e26753.

    Article  CAS  PubMed  Google Scholar 

  26. Nishida S, Hirohashi Y, Torigoe T, Inoue R, Kitamura H, Tanaka T et al. Prostate cancer stem-like cells/cancer-initiating cells have an autocrine system of hepatocyte growth factor. Cancer Sci 2013; 104: 431–436.

    Article  CAS  Google Scholar 

  27. Li Y, Li A, Glas M, Lal B, Ying M, Sang Y et al. c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc Natl Acad Sci USA 2011; 108: 9951–9956.

    Article  CAS  Google Scholar 

  28. Xu L, Shen SS, Hoshida Y, Subramanian A, Ross K, Brunet JP et al. Gene expression changes in an animal melanoma model correlate with aggressiveness of human melanoma metastases. Mol Cancer Res 2008; 6: 760–769.

    Article  CAS  PubMed  Google Scholar 

  29. Kucerova L, Matuskova M, Hlubinova K, Altanerova V, Altaner C . Tumor cell behaviour modulation by mesenchymal stromal cells. Mol Cancer 2010; 9: 129.

    Article  PubMed  Google Scholar 

  30. Amano S, Gu C, Koizumi S, Tokuyama T, Namba H . Timing of ganciclovir administration in glioma gene therapy using HSVtk gene-transduced mesenchymal stem cells. Cancer Genomics Proteomics 2011; 8: 245–250.

    CAS  PubMed  Google Scholar 

  31. de Souza AP, Bonorino C . The immune system: endogenous anticancer mechanism. Front Biosci (Elite Ed) 2012; 4: 2354–2364.

    Google Scholar 

  32. Paez D, Labonte MJ, Bohanes P, Zhang W, Benhanim L, Ning Y et al. Cancer dormancy: a model of early dissemination and late cancer recurrence. Clin Cancer Res 2012; 18: 645–653.

    Article  PubMed  Google Scholar 

  33. De Craene B, Berx G . Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 2013; 13: 97–110.

    Article  CAS  PubMed  Google Scholar 

  34. Kim JE, Leung E, Baguley BC, Finlay GJ . Heterogeneity of expression of epithelial-mesenchymal transition markers in melanocytes and melanoma cell lines. Front Genet 2013; 4: 97.

    PubMed Central  PubMed  Google Scholar 

  35. Shirley SH, Greene VR, Duncan LM, Torres Cabala CA, Grimm EA, Kusewitt DF . Slug expression during melanoma progression. Am J Pathol 2012; 180: 2479–2489.

    Article  CAS  PubMed  Google Scholar 

  36. Rouleau C, Smale R, Sancho J, Fu YS, Kurtzberg L, Weber W et al. Endosialin: a novel malignant cell therapeutic target for neuroblastoma. Int J Oncol 2011; 39: 841–851.

    CAS  PubMed  Google Scholar 

  37. Brabletz T . EMT and MET in metastasis: where are the cancer stem cells? Cancer Cell 2012; 22: 699–701.

    Article  CAS  PubMed  Google Scholar 

  38. Singh A, Settleman J . EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 2010; 29: 4741–4751.

    Article  CAS  PubMed  Google Scholar 

  39. La Porta C . Cancer stem cells: lessons from melanoma. Stem Cell Rev 2009; 5: 61–65.

    Article  CAS  PubMed  Google Scholar 

  40. Rocco M, Malorni L, Cozzolino R, Palmieri G, Rozzo C, Manca A et al. Proteomic profiling of human melanoma metastatic cell line secretomes. J Proteome Res 2011; 10: 4703–4714.

    Article  CAS  PubMed  Google Scholar 

  41. Mauerer A, Roesch A, Hafner C, Stempfl T, Wild P, Meyer S et al. Identification of new genes associated with melanoma. Exp Dermatol 2011; 20: 502–507.

    Article  CAS  PubMed  Google Scholar 

  42. Fukunaga-Kalabis M, Martinez G, Nguyen TK, Kim D, Santiago-Walker A, Roesch A et al. Tenascin-C promotes melanoma progression by maintaining the ABCB5-positive side population. Oncogene 2010; 29: 6115–6124.

    Article  CAS  PubMed  Google Scholar 

  43. Pierard GE, Pierard-Franchimont C, Delvenne P . Malignant melanoma and its stromal nonimmune microecosystem. J Oncol 2012; 2012: 584219.

    Article  PubMed  Google Scholar 

  44. Westhoff MA, Fulda S . Adhesion-mediated apoptosis resistance in cancer. Drug Resist Updat 2009; 12: 127–136.

    Article  CAS  PubMed  Google Scholar 

  45. Westhoff MA, Bruhl O, Nonnenmacher L, Karpel-Massler G, Debatin KM . Killing me softly–future challenges in apoptosis research. Int J Mol Sci 2014; 15: 3746–3767.

    Article  CAS  PubMed  Google Scholar 

  46. Kucerova L, Skolekova S . Tumor microenvironment and the role of mesenchymal stromal cells. Neoplasma 2013; 60: 1–10.

    Article  CAS  PubMed  Google Scholar 

  47. Hofmann UB, Houben R, Brocker EB, Becker JC . Role of matrix metalloproteinases in melanoma cell invasion. Biochimie 2005; 87: 307–314.

    Article  CAS  PubMed  Google Scholar 

  48. Toricelli M, Melo FH, Peres GB, Silva DC, Jasiulionis MG . Timp1 interacts with beta-1 integrin and CD63 along melanoma genesis and confers anoikis resistance by activating PI3-K signaling pathway independently of Akt phosphorylation. Mol Cancer 2013; 12: 22.

    Article  CAS  PubMed  Google Scholar 

  49. Defamie N, Chepied A, Mesnil M . Connexins, gap junctions and tissue invasion. FEBS Lett 2014; 588: 1331–1338.

    Article  CAS  PubMed  Google Scholar 

  50. Kurtenbach S, Zoidl G . Gap junction modulation and its implications for heart function. Front Physiol 2014; 5: 82.

    Article  PubMed  Google Scholar 

  51. Metildi CA, Kaushal S, Hoffman RM, Bouvet M . In vivo serial selection of human pancreatic cancer cells in orthotopic mouse models produces high metastatic variants irrespective of Kras status. J Surg Res 2013; 184: 290–298.

    Article  PubMed  Google Scholar 

  52. Adamcic U, Skowronski K, Peters C, Morrison J, Coomber BL . The effect of bevacizumab on human malignant melanoma cells with functional VEGF/VEGFR2 autocrine and intracrine signaling loops. Neoplasia 2012; 14: 612–623.

    Article  CAS  PubMed  Google Scholar 

  53. Piao Y, Liang J, Holmes L, Zurita AJ, Henry V, Heymach JV et al. Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro Oncol 2012; 14: 1379–1392.

    Article  CAS  PubMed  Google Scholar 

  54. Lee TH, Seng S, Sekine M, Hinton C, Fu Y, Avraham HK et al. Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Med 2007; 4: e186.

    Article  PubMed  Google Scholar 

  55. Shakhova O, Sommer L . Testing the cancer stem cell hypothesis in melanoma: the clinics will tell. Cancer Lett 2013; 338: 74–81.

    Article  CAS  Google Scholar 

  56. Das Thakur M, Stuart DD . The evolution of melanoma resistance reveals therapeutic opportunities. Cancer Res 2013; 73: 6106–6110.

    Article  CAS  Google Scholar 

  57. Meacham CE, Morrison SJ . Tumour heterogeneity and cancer cell plasticity. Nature 2013; 501: 328–337.

    Article  CAS  PubMed  Google Scholar 

  58. De Sousa EMF, Vermeulen L, Fessler E, Medema JP . Cancer heterogeneity–a multifaceted view. EMBO Rep 2013; 14: 686–695.

    Article  Google Scholar 

  59. Kucerova L, Skolekova S, Matuskova M, Bohac M, Kozovska Z . Altered features and increased chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal cells. BMC Cancer 2013; 13: 535.

    Article  PubMed  Google Scholar 

  60. Kucerova L, Kovacovicova M, Polak S, Bohac M, Fedeles J, Palencar D et al. Interaction of human adipose tissue-derived mesenchymal stromal cells with breast cancer cells. Neoplasma 2011; 58: 361–370.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M Dubrovcakova and V Frivalska for the excellent technical assistance. We acknowledge M Cihova for the help with manuscript editing and language corrections. The support and help with the data interpretation from M Mego, MD, PhD is highly appreciated. This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0230-11 (to LK) and APVV-0052-12 (to MM), Scientific Grant Agency VEGA grant No. 2/0088/11 (to LK) and 2/0171/13 (to MM). The expression analysis, fluorimetric measurements and live-cell kinetic imaging was co-financed by the Cancer Research Foundation funds WAC2003, RFL2009 and RFL2012.

AUTHOR CONTRIBUTIONS

Conception, design and development of methodology: LK; data acquisition: LK, SS, LD, RB and MM; analysis and data interpretation: LK and MM; writing of the manuscript and review: LK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Kucerova.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucerova, L., Skolekova, S., Demkova, L. et al. Long-term efficiency of mesenchymal stromal cell-mediated CD-MSC/5FC therapy in human melanoma xenograft model. Gene Ther 21, 874–887 (2014). https://doi.org/10.1038/gt.2014.66

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.66

This article is cited by

Search

Quick links