Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

One-year follow-up of transgene expression by integrase-defective lentiviral vectors and their therapeutic potential in spinocerebellar ataxia model mice

Abstract

We examined integrase-defective lentiviral vectors (IDLVs) with a mutant (D64V) integrase in terms of their residual integration capability, the levels and duration of transgene expression and their therapeutic potential in comparison to wild-type lentiviral vectors (WTLVs) with a wild-type integrase gene. Compared with WTLVs, the IDLV-mediated proviral integration into host-cell chromosomes was approximately 1/3850 in HeLa cells and approximately 1/111 in mouse cerebellar neurons in vivo. At 2 months, transgene expression by IDLVs in the mouse cerebellum was comparable to that by WTLVs, but then significantly decreased. The mRNA levels at 6 and 12 months after injection in IDLV-infected cerebella were approximately 26% and 5%, respectively, of the mRNA levels in WTLV-injected cerebella. To examine the therapeutic potential, IDLVs or WTLVs expressing a molecule that enhances the ubiquitin-proteasome pathway were injected into the cerebella of spinocerebellar ataxia type 3 model mice (SCA3 mice). IDLV-injected SCA3 mice showed a significantly improved rotarod performance even at 1 year after-injection. Immunohistochemistry at 1 year after injection showed a drastic reduction of mutant aggregates in Purkinje cellsfrom IDLV-injected, as well as WTLV-injected, SCA3 mice. Our results suggest that because of the substantially reduced risk of insertional mutagenesis, IDLVs are safer and potentially effective as gene therapy vectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Lever AM, Strappe PM, Zhao J . Lentiviral vectors. J Biomed Sci 2004; 11: 439–449.

    Article  CAS  PubMed  Google Scholar 

  2. Apolonia L, Waddington SN, Fernandes C, Ward NJ, Bouma G, Blundell MP et al. Stable gene transfer to muscle using non-integrating lentiviral vectors. Mol Ther 2007; 15: 1947–1954.

    Article  CAS  PubMed  Google Scholar 

  3. Kulkosky J, Skalka AM . Molecular mechanism of retroviral DNA integration. Pharmacol Ther 1994; 61: 185–203.

    Article  CAS  PubMed  Google Scholar 

  4. Hindmarsh P, Leis J . Retroviral DNA integration. Microbiol Mol Biol Rev 1999; 63: 836–843; table of contents.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  6. Li Z, Dullmann J, Schiedlmeier B, Schmidt M, von Kalle C, Meyer J et al. Murine leukemia induced by retroviral gene marking. Science 2002; 296: 497.

    Article  CAS  PubMed  Google Scholar 

  7. Matrai J, Chuah MK, VandenDriessche T . Recent advances in lentiviral vector development and applications. Mol Ther 2010; 18: 477–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Banasik MB, McCray PB Jr . Integrase-defective lentiviral vectors: progress and applications. Gene Therapy 2010; 17: 150–157.

    Article  CAS  PubMed  Google Scholar 

  9. Bayer M, Kantor B, Cockrell A, Ma H, Zeithaml B, Li X et al. A large U3 deletion causes increased in vivo expression from a nonintegrating lentiviral vector. Mol Ther 2008; 16: 1968–1976.

    Article  CAS  PubMed  Google Scholar 

  10. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 2007; 25: 1298–1306.

    Article  CAS  PubMed  Google Scholar 

  11. Nightingale SJ, Hollis RP, Pepper KA, Petersen D, Yu XJ, Yang C et al. Transient gene expression by nonintegrating lentiviral vectors. Mol Ther 2006; 13: 1121–1132.

    Article  CAS  PubMed  Google Scholar 

  12. Philippe S, Sarkis C, Barkats M, Mammeri H, Ladroue C, Petit C et al. Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc Natl Acad Sci USA 2006; 103: 17684–17689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saenz DT, Loewen N, Peretz M, Whitwam T, Barraza R, Howell KG et al. Unintegrated lentivirus DNA persistence and accessibility to expression in nondividing cells: analysis with class I integrase mutants. J Virol 2004; 78: 2906–2920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yanez-Munoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 2006; 12: 348–353.

    Article  CAS  PubMed  Google Scholar 

  15. Qin Q, Inatome R, Hotta A, Kojima M, Yamamura H, Hirai H et al. A novel GTPase, CRAG, mediates promyelocytic leukemia protein-associated nuclear body formation and degradation of expanded polyglutamine protein. J Cell Biol 2006; 172: 497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Torashima T, Koyama C, Iizuka A, Mitsumura K, Takayama K, Yanagi S et al. Lentivector-mediated rescue from cerebellar ataxia in a mouse model of spinocerebellar ataxia. EMBO Rep 2008; 9: 393–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leavitt AD, Robles G, Alesandro N, Varmus HE . Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection. J Virol 1996; 70: 721–728.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Vatakis DN, Kim S, Kim N, Chow SA, Zack JA . Human immunodeficiency virus integration efficiency and site selection in quiescent CD4+ T cells. J Virol 2009; 83: 6222–6233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakajima N, Lu R, Engelman A . Human immunodeficiency virus type 1 replication in the absence of integrase-mediated dna recombination: definition of permissive and nonpermissive T-cell lines. J Virol 2001; 75: 7944–7955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sawada Y, Kajiwara G, Iizuka A, Takayama K, Shuvaev AN, Koyama C et al. High transgene expression by lentiviral vectors causes maldevelopment of Purkinje cells in vivo. Cerebellum 2010; 9: 291–302.

    Article  CAS  PubMed  Google Scholar 

  21. Liu B, Wang S, Brenner M, Paton JF, Kasparov S . Enhancement of cell-specific transgene expression from a Tet-Off regulatory system using a transcriptional amplification strategy in the rat brain. J Gene Med 2008; 10: 583–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hioki H, Kuramoto E, Konno M, Kameda H, Takahashi Y, Nakano T et al. High-level transgene expression in neurons by lentivirus with Tet-Off system. Neurosci Res 2009; 63: 149–154.

    Article  CAS  PubMed  Google Scholar 

  23. Kobayashi K, Yasuhara T, Agari T, Muraoka K, Kameda M, Ji Yuan W et al. Control of dopamine-secretion by Tet-Off system in an in vivo model of parkinsonian rat. Brain Res 2006; 1102: 1–11.

    Article  CAS  PubMed  Google Scholar 

  24. Sloan B, Scheinfeld N . The use and safety of doxycycline hyclate and other second-generation tetracyclines. Expert Opin Drug Saf 2008; 7: 571–577.

    Article  CAS  PubMed  Google Scholar 

  25. Vandenberghe LH, Auricchio A . Novel adeno-associated viral vectors for retinal gene therapy. Gene Therapy 2012; 19: 162–168.

    Article  CAS  PubMed  Google Scholar 

  26. Weinberg MS, Samulski RJ, McCown TJ . Adeno-associated virus (AAV) gene therapy for neurological disease. Neuropharmacology 2013; 69: 82–88.

    Article  CAS  PubMed  Google Scholar 

  27. Lentz TB, Gray SJ, Samulski RJ . Viral vectors for gene delivery to the central nervous system. Neurobiol Dis 2012; 48: 179–188.

    Article  CAS  PubMed  Google Scholar 

  28. Stieger K, Schroeder J, Provost N, Mendes-Madeira A, Belbellaa B, Le Meur G et al. Detection of intact rAAV particles up to 6 years after successful gene transfer in the retina of dogs and primates. Mol Ther 2009; 17: 516–523.

    Article  CAS  PubMed  Google Scholar 

  29. Niemeyer GP, Herzog RW, Mount J, Arruda VR, Tillson DM, Hathcock J et al. Long-term correction of inhibitor-prone hemophilia B dogs treated with liver-directed AAV2-mediated factor IX gene therapy. Blood 2009; 113: 797–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Terashima T, Miwa A, Kanegae Y, Saito I, Okado H . Retrograde and anterograde labeling of cerebellar afferent projection by the injection of recombinant adenoviral vectors into the mouse cerebellar cortex. Anat Embryol 1997; 196: 363–382.

    Article  CAS  Google Scholar 

  31. Iino M, Goto K, Kakegawa W, Okado H, Sudo M, Ishiuchi S et al. Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 2001; 292: 926–929.

    Article  CAS  PubMed  Google Scholar 

  32. Duale H, Kasparov S, Paton JF, Teschemacher AG . Differences in transductional tropism of adenoviral and lentiviral vectors in the rat brainstem. Exp Physiol 2005; 90: 71–78.

    Article  CAS  PubMed  Google Scholar 

  33. Hartman ZC, Appledorn DM, Amalfitano A . Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Res 2008; 132: 1–14.

    Article  CAS  PubMed  Google Scholar 

  34. Johnson WG . Late-onset neurodegenerative diseases—the role of protein insolubility. J Anat 2000; 196 (Part 4): 609–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nagai Y, Popiel HA . Conformational changes and aggregation of expanded polyglutamine proteins as therapeutic targets of the polyglutamine diseases: exposed beta-sheet hypothesis. Curr Pharm Des 2008; 14: 3267–3279.

    Article  CAS  PubMed  Google Scholar 

  36. Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rub U . Brain pathology of spinocerebellar ataxias. Acta Neuropathol 2012; 124: 1–21.

    Article  CAS  PubMed  Google Scholar 

  37. Williams A, Jahreiss L, Sarkar S, Saiki S, Menzies FM, Ravikumar B et al. Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr Top Dev Biol 2006; 76: 89–101.

    Article  CAS  PubMed  Google Scholar 

  38. Hegde AN, Upadhya SC . Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease. Biochim Biophys Acta 2011; 1809: 128–140.

    Article  CAS  PubMed  Google Scholar 

  39. Takalo M, Salminen A, Soininen H, Hiltunen M, Haapasalo A . Protein aggregation and degradation mechanisms in neurodegenerative diseases. Am J Neurodegen Dis 2013; 2: 1–14.

    Google Scholar 

  40. Niwa H, Yamamura K, Miyazaki J . Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991; 108: 193–199.

    Article  CAS  PubMed  Google Scholar 

  41. Torashima T, Yamada N, Itoh M, Yamamoto A, Hirai H . Exposure of lentiviral vectors to subneutral pH shifts the tropism from Purkinje cell to Bergmann glia. Eur J Neurosci 2006; 24: 371–380.

    Article  PubMed  Google Scholar 

  42. Brussel A, Delelis O, Sonigo P . Alu-LTR real-time nested PCR assay for quantifying integrated HIV-1 DNA. Methods Mol Biol 2005; 304: 139–154.

    CAS  PubMed  Google Scholar 

  43. Kass DH, Raynor ME, Williams TM . Evolutionary history of B1 retroposons in the genus Mus. J Mol Evol 2000; 51: 256–264.

    Article  CAS  PubMed  Google Scholar 

  44. Nelson DL, Ledbetter SA, Corbo L, Victoria MF, Ramirez-Solis R, Webster TD et al. Alu polymerase chain reaction: a method for rapid isolation of human-specific sequences from complex DNA sources. Proc Natl Acad Sci USA 1989; 86: 6686–6690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002; 420: 520–562.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Junko Sugiyama, Asako Onishi and Hiromi Hirai for maintaining and genotyping the mutant mice. This work was supported by a grant from the Funding Program for Next Generation World-Leading Researchers (LS021) (to HH) and a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS); Grant-in-Aid for Young Scientists (B) KAKENHI 22700374).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Hirai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saida, H., Matsuzaki, Y., Takayama, K. et al. One-year follow-up of transgene expression by integrase-defective lentiviral vectors and their therapeutic potential in spinocerebellar ataxia model mice. Gene Ther 21, 820–827 (2014). https://doi.org/10.1038/gt.2014.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.60

This article is cited by

Search

Quick links