Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Novel rAAV vector mediated intrathecal HGF delivery has an impact on neuroimmune modulation in the ALS motor cortex with TDP-43 pathology

Abstract

Recombinant adeno-associated virus (rAAV)-based gene therapies offer an immense opportunity for rare diseases, such as amyotrophic lateral sclerosis (ALS), which is defined by the loss of the upper and the lower motor neurons. Here, we describe generation, characterization, and utilization of a novel vector system, which enables expression of the active form of hepatocyte growth factor (HGF) under EF-1α promoter with bovine growth hormone (bGH) poly(A) sequence and is effective with intrathecal injections. HGF’s role in promoting motor neuron survival had been vastly reported. Therefore, we investigated whether intrathecal delivery of HGF would have an impact on one of the most common pathologies of ALS: the TDP-43 pathology. Increased astrogliosis, microgliosis and progressive upper motor neuron loss are important consequences of ALS in the motor cortex with TDP-43 pathology. We find that cortex can be modulated via intrathecal injection, and that expression of HGF reduces astrogliosis, microgliosis in the motor cortex, and help restore ongoing UMN degeneration. Our findings not only introduce a novel viral vector for the treatment of ALS, but also demonstrate modulation of motor cortex by intrathecal viral delivery, and that HGF treatment is effective in reducing astrogliosis and microgliosis in the motor cortex of ALS with TDP-43 pathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Construction of HGF-X7 variants.
Fig. 2: Comparison of elements constituting the expression cassette in vitro and in vivo.
Fig. 3: Effect of each promoter on the production yield of rAAV, and comparison of rAAV1 and rAAV9 in vivo.
Fig. 4: Experimental design to study the effects of HGF treatment via intrathecal rAAV delivery in the prpTDP-43A315T-UeGFP mice, which are the well-characterized TDP-43 pathology model of ALS cortex in which diseased UMNs are genetically labeled with eGFP expression.
Fig. 5: Intrathecal injection of rAAV9 HGF reduces microgliosis in the motor cortex of prpTDP-43A315T-UeGFP mice.
Fig. 6: Intrathecal injection of rAAV9 HGF reduces astrogliosis in the motor cortex of prpTDP-43A315T-UeGFP mice.
Fig. 7: Intrathecal injection of rAAV9 HGF reduces cytoplasmic accumulation of ubiquitinated proteins and the extent of UMN degeneration in the motor cortex of prpTDP-43A315T-UeGFP mice.
Fig. 8: Intrathecal injection of rAAV9 HGF reduces percentage of UMN with vacuolated apical dendrites in prpTDP-43A315T-UeGFP mice.

Similar content being viewed by others

Data availability

Data generated or analyzed during this study can be found within the published article.

References

  1. Vucic S, Pavey N, Haidar M, Turner BJ, Kiernan MC. Cortical hyperexcitability: Diagnostic and pathogenic biomarker of ALS. Neurosci Lett. 2021;759:136039.

    Article  CAS  PubMed  Google Scholar 

  2. Geevasinga N, Menon P, Ozdinler PH, Kiernan MC, Vucic S. Pathophysiological and diagnostic implications of cortical dysfunction in ALS. Nat Rev Neurol. 2016;12:651–61.

    Article  CAS  PubMed  Google Scholar 

  3. Lemon RN. The Cortical “Upper Motoneuron” in Health and Disease. Brain Sci. 2021;11:619.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Genc B, Jara JH, Sanchez SS, Lagrimas AKB, Gozutok O, Kocak N, et al. Upper motor neurons are a target for gene therapy and UCHL1 is necessary and sufficient to improve cellular integrity of diseased upper motor neurons. Gene Ther. 2022;29:178–92.

    Article  CAS  PubMed  Google Scholar 

  5. Thomsen GM, Gowing G, Latter J, Chen M, Vit JP, Staggenborg K, et al. Delayed disease onset and extended survival in the SOD1G93A rat model of amyotrophic lateral sclerosis after suppression of mutant SOD1 in the motor cortex. J Neurosci. 2014;34:15587–600.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Burg T, Bichara C, Scekic-Zahirovic J, Fischer M, Stuart-Lopez G, Brunet A, et al. Absence of Subcerebral Projection Neurons Is Beneficial in a Mouse Model of Amyotrophic Lateral Sclerosis. Ann Neurol. 2020;88:688–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Scekic-Zahirovic J, Fischer M, Stuart-Lopez G, Burg T, Gilet J, Dirrig-Grosch S, et al. Evidence that corticofugal propagation of ALS pathology is not mediated by prion-like mechanism. Prog Neurobiol. 2021;200:101972.

    Article  CAS  PubMed  Google Scholar 

  8. Marques C, Burg T, Scekic-Zahirovic J, Fischer M, Rouaux C. Upper and Lower Motor Neuron Degenerations Are Somatotopically Related and Temporally Ordered in the Sod1 Mouse Model of Amyotrophic Lateral Sclerosis. Brain Sci. 2021;11:369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Svendsen CN. Getting the upper hand in ALS. Gene Ther. 2022;29:113–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thomsen GM, Avalos P, Ma AA, Alkaslasi M, Cho N, Wyss L, et al. Transplantation of Neural Progenitor Cells Expressing Glial Cell Line-Derived Neurotrophic Factor into the Motor Cortex as a Strategy to Treat Amyotrophic Lateral Sclerosis. Stem Cells. 2018;36:1122–31.

    Article  CAS  PubMed  Google Scholar 

  11. Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ, et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol. 2007;61:427–34.

    Article  CAS  PubMed  Google Scholar 

  12. Gitcho MA, Baloh RH, Chakraverty S, Mayo K, Norton JB, Levitch D, et al. TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol. 2008;63:535–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ling SC, Polymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron. 2013;79:416–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kwong LK, Neumann M, Sampathu DM, Lee VM, Trojanowski JQ. TDP-43 proteinopathy: the neuropathology underlying major forms of sporadic and familial frontotemporal lobar degeneration and motor neuron disease. Acta Neuropathol. 2007;114:63–70.

    Article  CAS  PubMed  Google Scholar 

  15. Liscic RM, Grinberg LT, Zidar J, Gitcho MA, Cairns NJ. ALS and FTLD: two faces of TDP-43 proteinopathy. Eur J Neurol. 2008;15:772–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mackenzie IR, Rademakers R. The role of transactive response DNA-binding protein-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol. 2008;21:693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Neumann M, Kwong LK, Sampathu DM, Trojanowski JQ, Lee VM. TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis. Arch Neurol. 2007;64:1388–94.

    Article  PubMed  Google Scholar 

  18. Jara JH, Gautam M, Kocak N, Xie EF, Mao Q, Bigio EH, et al. MCP1-CCR2 and neuroinflammation in the ALS motor cortex with TDP-43 pathology. J Neuroinflamm. 2019;16:196.

    Article  Google Scholar 

  19. Jara JH, Genc B, Stanford MJ, Pytel P, Roos RP, Weintraub S, et al. Evidence for an early innate immune response in the motor cortex of ALS. J Neuroinflamm. 2017;14:129.

    Article  Google Scholar 

  20. Vaz SH, Pinto S, Sebastiao AM, Brites D. Astrocytes in Amyotrophic Lateral Sclerosis. In: Araki T, editor. Amyotroph Lateral Sc. Brisbane (AU): Exon Publications; 2021.

  21. Van Harten ACM, Phatnani H, Przedborski S. Non-cell-autonomous pathogenic mechanisms in amyotrophic lateral sclerosis. Trends Neurosci. 2021;44:658–68.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Appel SH, Beers DR, Zhao W. Amyotrophic lateral sclerosis is a systemic disease: peripheral contributions to inflammation-mediated neurodegeneration. Curr Opin Neurol. 2021;34:765–72.

    Article  PubMed  Google Scholar 

  23. Boillee S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron. 2006;52:39–59.

    Article  CAS  PubMed  Google Scholar 

  24. Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA. 2009;106:18809–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Handley EE, Pitman KA, Dawkins E, Young KM, Clark RM, Jiang TC, et al. Synapse Dysfunction of Layer V Pyramidal Neurons Precedes Neurodegeneration in a Mouse Model of TDP-43 Proteinopathies. Cereb Cortex. 2017;27:3630–47.

    PubMed  Google Scholar 

  26. Gautam M, Jara JH, Kocak N, Rylaarsdam LE, Kim KD, Bigio EH, et al. Mitochondria, ER, and nuclear membrane defects reveal early mechanisms for upper motor neuron vulnerability with respect to TDP-43 pathology. Acta Neuropathol. 2019;137:47–69.

    Article  CAS  PubMed  Google Scholar 

  27. Genc B, Jara JH, Lagrimas AK, Pytel P, Roos RP, Mesulam MM, et al. Apical dendrite degeneration, a novel cellular pathology for Betz cells in ALS. Sci Rep. 2017;7:41765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Genc B, Ozdinler PH. Moving forward in clinical trials for ALS: motor neurons lead the way please. Drug Discov Today. 2014;19:441–9.

    Article  PubMed  Google Scholar 

  29. Jara JH, Genc B, Klessner JL, Ozdinler PH. Retrograde labeling, transduction, and genetic targeting allow cellular analysis of corticospinal motor neurons: implications in health and disease. Front Neuroanat. 2014;8:16.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jara JH, Villa SR, Khan NA, Bohn MC, Ozdinler PH. AAV2 mediated retrograde transduction of corticospinal motor neurons reveals initial and selective apical dendrite degeneration in ALS. Neurobiol Dis. 2012;47:174–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jara JH, Stanford MJ, Zhu Y, Tu M, Hauswirth WW, Bohn MC, et al. Healthy and diseased corticospinal motor neurons are selectively transduced upon direct AAV2-2 injection into the motor cortex. Gene Ther. 2016;23:272–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hardcastle N, Boulis NM, Federici T. AAV gene delivery to the spinal cord: serotypes, methods, candidate diseases, and clinical trials. Expert Opin Biol Ther. 2018;18:293–307.

    Article  CAS  PubMed  Google Scholar 

  33. Lee SH, Kim S, Lee N, Lee J, Yu SS, Kim JH, et al. Intrathecal delivery of recombinant AAV1 encoding hepatocyte growth factor improves motor functions and protects neuromuscular system in the nerve crush and SOD1-G93A transgenic mouse models. Acta Neuropathol Commun. 2019;7:96.

    Article  PubMed  Google Scholar 

  34. Ishigaki A, Aoki M, Nagai M, Warita H, Kato S, Kato M, et al. Intrathecal delivery of hepatocyte growth factor from amyotrophic lateral sclerosis onset suppresses disease progression in rat amyotrophic lateral sclerosis model. J Neuropathol Exp Neurol. 2007;66:1037–44.

    Article  CAS  PubMed  Google Scholar 

  35. Sun W, Funakoshi H, Nakamura T. Overexpression of HGF retards disease progression and prolongs life span in a transgenic mouse model of ALS. J Neurosci. 2002;22:6537–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hayashi Y, Kawazoe Y, Sakamoto T, Ojima M, Wang W, Takazawa T, et al. Adenoviral gene transfer of hepatocyte growth factor prevents death of injured adult motoneurons after peripheral nerve avulsion. Brain Res. 2006;1111:187–95.

    Article  CAS  PubMed  Google Scholar 

  37. Ebens A, Brose K, Leonardo ED, Hanson MG, Bladt F, Birchmeier C, et al. Hepatocyte growth factor scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron. 1996;17:1157–72.

    Article  CAS  PubMed  Google Scholar 

  38. Maina F, Klein R. Hepatocyte growth factor, a versatile signal for developing neurons. Nature Neurosci. 1999;2:213–7.

    Article  CAS  PubMed  Google Scholar 

  39. Yamamoto Y, Livet J, Pollock RA, Garces A, Arce V, deLapeyriere O, et al. Hepatocyte growth factor (HGF/SF) is a muscle-derived survival factor for a subpopulation of embryonic motoneurons. Development. 1997;124:2903–13.

    Article  CAS  PubMed  Google Scholar 

  40. Ajroud-Driss S, Christiansen M, Allen JA, Kessler JA. Phase 1/2 open-label dose-escalation study of plasmid DNA expressing two isoforms of hepatocyte growth factor in patients with painful diabetic peripheral neuropathy. Mol Ther. 2013;21:1279–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kessler JA, Smith AG, Cha BS, Choi SH, Wymer J, Shaibani A, et al. Double-blind, placebo-controlled study of HGF gene therapy in diabetic neuropathy. Ann Clin Transl Neurol. 2015;2:465–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pyun WB, Hahn W, Kim DS, Yoo WS, Lee SD, Won JH, et al. Naked DNA expressing two isoforms of hepatocyte growth factor induces collateral artery augmentation in a rabbit model of limb ischemia. Gene Ther. 2010;17:1442–52.

    Article  CAS  PubMed  Google Scholar 

  43. Sufit RL, Ajroud-Driss S, Casey P, Kessler JA. Open label study to assess the safety of VM202 in subjects with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2017;18:269–78.

    Article  CAS  PubMed  Google Scholar 

  44. Ebens A, Brose K, Leonardo ED, Hanson MG Jr., Bladt F, Birchmeier C, et al. Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron. 1996;17:1157–72.

    Article  CAS  PubMed  Google Scholar 

  45. Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet. 2020;21:255–72.

    Article  CAS  PubMed  Google Scholar 

  46. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18:358–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. During MJ, Leone P. Adeno-associated virus vectors for gene therapy of neurodegenerative disorders. Clin Neurosci. 1995;3:292–300.

    PubMed  Google Scholar 

  48. McCown TJ. Adeno-associated virus (AAV) vectors in the CNS. Curr Gene Ther. 2005;5:333–8.

    Article  CAS  PubMed  Google Scholar 

  49. Janson C, McPhee S, Bilaniuk L, Haselgrove J, Testaiuti M, Freese A, et al. Clinical protocol. Gene therapy of Canavan disease: AAV-2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain. Hum Gene Ther. 2002;13:1391–412.

    Article  CAS  PubMed  Google Scholar 

  50. Colella P, Ronzitti G, Mingozzi F. Emerging Issues in AAV-Mediated In Vivo Gene Therapy. Mol Ther Methods Clin Dev. 2018;8:87–104.

    Article  CAS  PubMed  Google Scholar 

  51. Yasvoina MV, Genc B, Jara JH, Sheets PL, Quinlan KA, Milosevic A, et al. eGFP expression under UCHL1 promoter genetically labels corticospinal motor neurons and a subpopulation of degeneration-resistant spinal motor neurons in an ALS mouse model. J Neurosci. 2013;33:7890–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Esmaeili MA, Panahi M, Yadav S, Hennings L, Kiaei M. Premature death of TDP-43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis. Int J Exp Pathol. 2013;94:56–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Genc B, Gautam M, Gozutok O, Dervishi I, Sanchez S, Goshu GM, et al. Improving mitochondria and ER stability helps eliminate upper motor neuron degeneration that occurs due to mSOD1 toxicity and TDP-43 pathology. Clin Transl Med. 2021;11:e336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gautam M, Xie EF, Kocak N, Ozdinler PH. Mitoautophagy: A Unique Self-Destructive Path Mitochondria of Upper Motor Neurons With TDP-43 Pathology Take, Very Early in ALS. Front Cell Neurosci. 2019;13:489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nho B, Lee J, Lee J, Ko KR, Lee SJ, Kim S. Effective control of neuropathic pain by transient expression of hepatocyte growth factor in a mouse chronic constriction injury model. FASEB J. 2018;32:5119–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Valencia P, Dias AP, Reed R. Splicing promotes rapid and efficient mRNA export in mammalian cells. Proc Natl Acad Sci USA. 2008;105:3386–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee Y, Park EJ, Yu SS, Kim DK, Kim S. Improved expression of vascular endothelial growth factor by naked DNA in mouse skeletal muscles: implication for gene therapy of ischemic diseases. Biochem Biophys Res Commun. 2000;272:230–5.

    Article  CAS  PubMed  Google Scholar 

  58. Goodwin EC, Rottman FM. The 3’-flanking sequence of the bovine growth hormone gene contains novel elements required for efficient and accurate polyadenylation. J Biol Chem. 1992;267:16330–4.

    Article  CAS  PubMed  Google Scholar 

  59. Wang L, Yin Z, Wang Y, Lu Y, Zhang D, Srivastava A, et al. Productive life cycle of adeno-associated virus serotype 2 in the complete absence of a conventional polyadenylation signal. J Gen Virol. 2015;96:2780–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fitzgerald M, Shenk T. The sequence 5’-AAUAAA-3’forms parts of the recognition site for polyadenylation of late SV40 mRNAs. Cell. 1981;24:251–60.

    Article  CAS  PubMed  Google Scholar 

  61. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther. 2008;16:1073–80.

    Article  CAS  PubMed  Google Scholar 

  62. Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. Compact 2nd edn. Amsterdam; Boston: Elsevier Academic Press; 2004.

  63. Bleker S, Sonntag F, Kleinschmidt JA. Mutational analysis of narrow pores at the fivefold symmetry axes of adeno-associated virus type 2 capsids reveals a dual role in genome packaging and activation of phospholipase A2 activity. J Virol. 2005;79:2528–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hudry E, Vandenberghe LH. Therapeutic AAV Gene Transfer to the Nervous System: A Clinical Reality. Neuron. 2019;101:839–62.

    Article  CAS  PubMed  Google Scholar 

  65. McCraw DM, O’Donnell JK, Taylor KA, Stagg SM, Chapman MS. Structure of adeno-associated virus-2 in complex with neutralizing monoclonal antibody A20. Virology. 2012;431:40–9.

    Article  CAS  PubMed  Google Scholar 

  66. Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs. 2017;31:317–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Venkatakrishnan B, Yarbrough J, Domsic J, Bennett A, Bothner B, Kozyreva OG, et al. Structure and dynamics of adeno-associated virus serotype 1 VP1-unique N-terminal domain and its role in capsid trafficking. J Virol. 2013;87:4974–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging. Mol Ther. 2010;18:80–6.

    Article  CAS  PubMed  Google Scholar 

  69. van der Loo JC, Wright JF. Progress and challenges in viral vector manufacturing. Hum Mol Genet. 2016;25(R1):R42–52.

    Article  PubMed  Google Scholar 

  70. Ozdinler PH, Benn S, Yamamoto TH, Guzel M, Brown RH Jr., Macklis JD. Corticospinal motor neurons and related subcerebral projection neurons undergo early and specific neurodegeneration in hSOD1G(9)(3)A transgenic ALS mice. J Neurosci. 2011;31:4166–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gautam M, Jara JH, Sekerkova G, Yasvoina MV, Martina M, Ozdinler PH. Absence of alsin function leads to corticospinal motor neuron vulnerability via novel disease mechanisms. Hum Mol Genet. 2016;25:1074–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fil D, DeLoach A, Yadav S, Alkam D, MacNicol M, Singh A, et al. Mutant Profilin1 transgenic mice recapitulate cardinal features of motor neuron disease. Hum Mol genet. 2017;26:686–701.

    CAS  PubMed  Google Scholar 

  73. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314:130–3.

    Article  CAS  PubMed  Google Scholar 

  74. Braak H, Ludolph AC, Neumann M, Ravits J, Del, Tredici K. Pathological TDP-43 changes in Betz cells differ from those in bulbar and spinal alpha-motoneurons in sporadic amyotrophic lateral sclerosis. Acta Neuropathol. 2017;133:79–90.

    Article  CAS  PubMed  Google Scholar 

  75. Droppelmann CA, Campos-Melo D, Moszczynski AJ, Amzil H, Strong MJ. TDP-43 aggregation inside micronuclei reveals a potential mechanism for protein inclusion formation in ALS. Sci Rep. 2019;9:19928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Miguel L, Frebourg T, Campion D, Lecourtois M. Both cytoplasmic and nuclear accumulations of the protein are neurotoxic in Drosophila models of TDP-43 proteinopathies. Neurobiol Dis. 2011;41:398–406.

    Article  CAS  PubMed  Google Scholar 

  77. Tsao W, Jeong YH, Lin S, Ling J, Price DL, Chiang PM, et al. Rodent models of TDP-43: recent advances. Brain Res. 2012;1462:26–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Roberson ED. Mouse models of frontotemporal dementia. Ann Neurol. 2012;72:837–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bonifacino T, Zerbo RA, Balbi M, Torazza C, Frumento G, Fedele E, et al. Nearly 30 Years of Animal Models to Study Amyotrophic Lateral Sclerosis: A Historical Overview and Future Perspectives. Int J Mol Sci. 2021;22:12236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. De Giorgio F, Maduro C, Fisher EMC, Acevedo-Arozena A. Transgenic and physiological mouse models give insights into different aspects of amyotrophic lateral sclerosis. Dis Model Mech. 2019;12:dmm037424.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lutz C. Mouse models of ALS: Past, present and future. Brain Res. 2018;1693:1–10.

    Article  CAS  PubMed  Google Scholar 

  82. Morrice JR, Gregory-Evans CY, Shaw CA. Animal models of amyotrophic lateral sclerosis: A comparison of model validity. Neural Regen Res. 2018;13:2050–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ittner LM, Halliday GM, Kril JJ, Gotz J, Hodges JR, Kiernan MC. FTD and ALS-translating mouse studies into clinical trials. Nat Rev Neurol. 2015;11:360–6.

    Article  PubMed  Google Scholar 

  84. Wegorzewska I, Baloh RH. TDP-43-based animal models of neurodegeneration: new insights into ALS pathology and pathophysiology. Neurodegener Dis. 2011;8:262–74.

    Article  CAS  PubMed  Google Scholar 

  85. Lee SH, Lee N, Kim S, Lee J, Choi W, Yu SS, et al. Intramuscular delivery of HGF-expressing recombinant AAV improves muscle integrity and alleviates neurological symptoms in the nerve crush and SOD1-G93A transgenic mouse models. Biochem Biophys Res Commun. 2019;517:452–7.

    Article  CAS  PubMed  Google Scholar 

  86. Choi W, Lee J, Lee J, Ko KR, Kim S. Hepatocyte Growth Factor Regulates the miR-206-HDAC4 Cascade to Control Neurogenic Muscle Atrophy following Surgical Denervation in Mice. Mol Ther Nucleic Acids. 2018;12:568–77.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ko KR, Lee J, Lee D, Nho B, Kim S. Hepatocyte Growth Factor (HGF) Promotes Peripheral Nerve Regeneration by Activating Repair Schwann Cells. Sci Rep. 2018;8:8316.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lee N, Lee SH, Lee J, Lee MY, Lim J, Kim S, et al. Hepatocyte growth factor is necessary for efficient outgrowth of injured peripheral axons in in vitro culture system and in vivo nerve crush mouse model. Biochem Biophys Rep. 2021;26:100973.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sufit RL, Ajroud-Driss S, Casey P, Kessler JA. Open label study to assess the safety of VM202 in subjects with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2017;18:269–78.

    Article  CAS  PubMed  Google Scholar 

  90. Kessler JA, Shaibani A, Sang CN, Christiansen M, Kudrow D, Vinik A, et al. Gene therapy for diabetic peripheral neuropathy: A randomized, placebo-controlled phase III study of VM202, a plasmid DNA encoding human hepatocyte growth factor. Clin Transl Sci. 2021;14:1176–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Boros BD, Schoch KM, Kreple CJ, Miller TM. Antisense Oligonucleotides for the Study and Treatment of ALS. Neurotherapeutics. 2022;19:1145–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Meijboom KE, Brown RH. Approaches to Gene Modulation Therapy for ALS. Neurotherapeutics. 2022;19:1159–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang Y, Duan W, Wang W, Di W, Liu Y, Liu Y, et al. scAAV9-VEGF prolongs the survival of transgenic ALS mice by promoting activation of M2 microglia and the PI3K/Akt pathway. Brain Res. 2016;1648(Pt A):1–10.

    CAS  PubMed  Google Scholar 

  94. Wang W, Duan W, Wang Y, Wen D, Liu Y, Li Z, et al. Intrathecal Delivery of ssAAV9-DAO Extends Survival in SOD1(G93A) ALS Mice. Neurochem Res. 2017;42:986–96.

    Article  CAS  PubMed  Google Scholar 

  95. Kook MG, Byun MR, Lee SM, Lee MH, Lee DH, Lee HB, et al. Anti-apoptotic Splicing Variant of AIMP2 Recover Mutant SOD1-Induced Neuronal Cell Death. Mol Neurobiol. 2023;60:145–59.

    Article  CAS  PubMed  Google Scholar 

  96. Foust KD, Salazar DL, Likhite S, Ferraiuolo L, Ditsworth D, Ilieva H, et al. Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited ALS. Mol Ther. 2013;21:2148–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang H, Yang B, Qiu L, Yang C, Kramer J, Su Q, et al. Widespread spinal cord transduction by intrathecal injection of rAAV delivers efficacious RNAi therapy for amyotrophic lateral sclerosis. Hum Mol Genet. 2014;23:668–81.

    Article  CAS  PubMed  Google Scholar 

  98. Li D, Liu C, Yang C, Wang D, Wu D, Qi Y, et al. Slow Intrathecal Injection of rAAVrh10 Enhances its Transduction of Spinal Cord and Therapeutic Efficacy in a Mutant SOD1 Model of ALS. Neuroscience. 2017;365:192–205.

    Article  CAS  PubMed  Google Scholar 

  99. Dirren E, Aebischer J, Rochat C, Towne C, Schneider BL, Aebischer P. SOD1 silencing in motoneurons or glia rescues neuromuscular function in ALS mice. Ann Clin Transl Neurol. 2015;2:167–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Patel P, Kriz J, Gravel M, Soucy G, Bareil C, Gravel C, et al. Adeno-associated virus-mediated delivery of a recombinant single-chain antibody against misfolded superoxide dismutase for treatment of amyotrophic lateral sclerosis. Mol Ther. 2014;22:498–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Miller T, Cudkowicz M, Shaw PJ, Andersen PM, Atassi N, Bucelli RC, et al. Phase 1-2 Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. NEngl J Med. 2020;383:109–19.

    Article  CAS  Google Scholar 

  102. Miller TM, Cudkowicz ME, Genge A, Shaw PJ, Sobue G, Bucelli RC, et al. Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS. N Engl J Med. 2022;387:1099–110.

    Article  CAS  PubMed  Google Scholar 

  103. Naveed A, Calderon H. Onasemnogene Abeparvovec (AVXS-101) for the Treatment of Spinal Muscular Atrophy. J Pediatr Pharmacol Ther. 2021;26:437–44.

    PubMed  PubMed Central  Google Scholar 

  104. Bailey RM, Armao D, Nagabhushan Kalburgi S, Gray SJ. Development of Intrathecal AAV9 Gene Therapy for Giant Axonal Neuropathy. Mol Ther Methods Clin Dev. 2018;9:160–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Imaging work was performed at the Northwestern University Center for Advanced Microscopy generously supported by NCI CCSG P30 CA060553 awarded to the Robert H Lurie Comprehensive Cancer Center. This work was supported by grants from NUCATS Translational Innovation Grant (PHO), Spastic Paraplegia Foundation grant (PHO), and in part by Helixmith Co., Ltd. Company collaboration grant (PHO).

Author information

Authors and Affiliations

Authors

Contributions

BN, BG, HS, ÖG, HP, BH, SK, JP, SY, HL, NL, S-SY, and PHO performed experiments. BN, BG, HS, ÖG, HP, BH, SK, JP, SY, HL, NL, S-SY, SK, JL, and PHO analyzed data, and BN, BG, JL, and PHO contributed to the writing of this manuscript.

Corresponding authors

Correspondence to Junghun Lee or Hande Özdinler.

Ethics declarations

Competing interests

BN, HS, HP, SK, JP, SY, HL, NL, S-SY, SK, and JL are employees and/or shareholders of Helixmith Co., Ltd. Barış Genç, Öge Gözütok, Benjamin Helmold, and Hande Özdinler declare that they have no competing interests.

Ethical approval

All experimental and injection protocols were approved by the Institutional Animal Care and Use Committee (IACUC) at Helixmith Co. Ltd, Seoul National University and at Northwestern University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genç, B., Nho, B., Seung, H. et al. Novel rAAV vector mediated intrathecal HGF delivery has an impact on neuroimmune modulation in the ALS motor cortex with TDP-43 pathology. Gene Ther 30, 560–574 (2023). https://doi.org/10.1038/s41434-023-00383-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-023-00383-4

Search

Quick links