Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intracerebral lentiviral ABCD1 gene therapy in an early disease onset ALD mouse model

Abstract

X-linked adrenoleukodystrophy (ALD) is a genetic disorder of the ABCD1 gene. We aimed to treat ALD via direct intracerebral injection of lentiviral ABCD1 (LV.ABCD1). Lentiviral vectors (LVs) were injected into the brain of wild type mice to access toxicities and biodistribution. Confocal microscopy illustrated supraphysiological ABCD1 expression surrounding the injection sites, and LVs were also detected in the opposite site of the unilaterally injected brain. In multi-site bilateral injections (4, 6, 8, and 9 sites), LV.ABCD1 transduced most brain regions including the cerebellum. Investigation of neuronal loss, astrogliosis and microglia activation did not detect abnormality. For efficacy evaluation, a novel ALD knockout (KO) mouse model was established by deleting exons 3 to 9 of the ABCD1 gene based on CRISPR/Cas9 gene editing. The KO mice showed behavioral deficit in open-field test (OFT) and reduced locomotor activities in rotarod test at 6 and 7 months of age, respectively. We treated 3-month-old KO mice with bilateral LV.ABCD1 injections into the external capsule and thalamus. ABCD1 expression was detected 15 days later, and the impaired motor ability was gradually alleviated. Our studies established an early onset ALD model and illustrated neurological improvement after LV.ABCD1 intracerebral injection without immunopathological toxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LV system and expression analysis of LV.ABCD1.
Fig. 2: ABCD1 expression in the external capsule (EC), thalamus (Thal) 18 days following the unilateral administration of LV.ABCD1.
Fig. 3: ABCD1 expression in the EC, Thal, internal capsules (IC), cerebellar vermis (CV) and ventral tegmental area (VTA) 18 days following bilateral administration of LV.ABCD1.
Fig. 4: Generation of ALDP-deficient mice.
Fig. 5: The VLCFA and FC analyses.
Fig. 6: Behavior tests of intracerebral LV.ABCD1 injected dl3/9ABCD1 mice and WT mice at 6 to 12 months of age (n = 10 each group).

Similar content being viewed by others

Data availability

All raw data and materials used for figure generation in this study are available by contacting the corresponding author.

References

  1. Raymond GV. Leukodystrophy: basic and clinical. Adv Neurobiol. 2017;15:365–82.

    Article  PubMed  Google Scholar 

  2. Deon M, Marchetti DP, Donida B, Wajner M, Vargas C. Oxidative stress in patients with X-linked adrenoleukodystrophy. Cell Mol Neurobiol. 2015;36:497–512.

    Article  PubMed  Google Scholar 

  3. Ohashi T. Gene therapy for lysosomal storage diseases and peroxisomal diseases. J Hum Genet. 2018;64:139–43.

    Article  PubMed  Google Scholar 

  4. Powers JM, Pei Z, Heinzer AK, Deering R, Moser AB, Moser HW, et al. Adreno-leukodystrophy: oxidative stress of mice and men. J Neuropathol Exp Neurol. 2005;64:1067–79.

    Article  CAS  PubMed  Google Scholar 

  5. Jia MR, Wu WZ, Li CM, Cai XH, Zhang L, Yan F, et al. Clinical characteristics and phenotype distribution in 10 chinese patients with X-linked adrenoleukodystrophy. Exp Ther Med. 2019;18:1945–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kemp S, Berger J, Aubourg P. X-linked adrenoleukodystrophy: Clinical, metabolic, genetic and pathophysiological aspects. Biochim Biophys Acta. 2012;1822:1465–74.

    Article  CAS  PubMed  Google Scholar 

  7. Sassa T, Wakashima T, Ohno Y, Kihara A. Lorenzo’s oil inhibits ELOVL1 and lowers the level of sphingomyelin with a saturated very long-chain fatty acid. J Lipid Res. 2014;55:524–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ciftciler R, Goker H, Buyukasik Y, Topcu M, Gevher N, Demiroglu H. The experience of allogeneic hematopoietic stem cell transplantation in a patient with X-linked adrenoleukodystrophy. Transfus Apher Sci. 2020;59:102583.

    Article  PubMed  Google Scholar 

  9. Mallack EJ, Turk B, Yan H, Eichler FS. The landscape of hematopoietic stem cell transplant and gene therapy for X-linked adrenoleukodystrophy. Curr Treat Options Neurol. 2019;21:61.

    Article  PubMed  Google Scholar 

  10. Thwaite R, Pagès G, Chillón M, Bosch A. AAVrh.10 immunogenicity in mice and humans. Relevance of antibody cross-reactivity in human gene therapy. Gene Ther. 2014;22:196–201.

    Article  PubMed  Google Scholar 

  11. Zhao L, Gottesdiener AJ, Parmar M, Li M, Kaminsky SM, Chiuchiolo MJ, et al. Intracerebral adeno-associated virus gene delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer’s disease mouse models. Neurobiol Aging. 2016;44:159–72.

    Article  CAS  PubMed  Google Scholar 

  12. Tardieu M, Zérah M, Gougeon M-L, Ausseil J, de Bournonville S, Husson B, et al. Intracerebral gene therapy in children with mucopolysaccharidosis type IIIb syndrome: an uncontrolled phase 1/2 clinical trial. Lancet Neurol. 2017;16:712–20.

    Article  CAS  PubMed  Google Scholar 

  13. Russell KN, Mitchell NL, Anderson NG, Bunt CR, Wellby MP, Melzer TR, et al. Computed tomography provides enhanced techniques for longitudinal monitoring of progressive intracranial volume loss associated with regional neurodegeneration in ovine neuronal ceroid lipofuscinoses. Brain Behav. 2018;8:e01096.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chien Y-H, Lee N-C, Tseng S-H, Tai C-H, Muramatsu S-I, Byrne BJ, et al. Efficacy and safety of AAV2 gene therapy in children with aromatic L-amino acid decarboxylase deficiency: an open-label, phase 1/2 trial. Lancet Child Adoles Health. 2017;1:265–73.

    Article  Google Scholar 

  15. Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017;31:317–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang L-J, Urlacher V, Iwakuma T, Cui Y, Zucali J. Efficacy and safety analyses of a recombinant human immunodeficiency virus type 1 derived vector system. Gene Ther. 1999;6:715–28.

    Article  CAS  PubMed  Google Scholar 

  17. Chang L-J, Gay EE. The molecular genetics of lentiviral vectors - current and future perspectives. Curr Gene Ther. 2001;1:237–51.

    Article  CAS  PubMed  Google Scholar 

  18. Engelen M, Kemp S, Poll-The BT. X-linked adrenoleukodystrophy: Pathogenesis and treatment. Curr Neurol Neurosci Rep. 2014;14:486.

    Article  PubMed  Google Scholar 

  19. Eichler F, Duncan C, Musolino PL, Orchard PJ, De Oliveira S, Thrasher AJ, et al. Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N Engl J Med. 2017;377:1630–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nathalie Cartier SH-B-A. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 2009;326:818–23.

    Article  PubMed  Google Scholar 

  21. Palfi S, Gurruchaga JM, Ralph GS, Lepetit H, Lavisse S, Buttery PC, et al. Long-term safety and tolerability of prosavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet. 2014;383:1138–46.

    Article  CAS  PubMed  Google Scholar 

  22. Meneghini V, Lattanzi A, Tiradani L, Bravo G, Morena F, Sanvito F, et al. Pervasive supply of therapeutic lysosomal enzymes in the CNS of normal and Krabbe-affected non-human primates by intracerebral lentiviral gene therapy. EMBO Mol Med. 2016;8:489–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chang L-J, Liu X, He J. Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1. Gene Ther. 2005;12:1133–44.

    Article  CAS  PubMed  Google Scholar 

  24. Gong J, Chung T-H, Zheng J, Zheng H, Chang L-J. Transduction of modified factor VIII gene improves lentiviral gene therapy efficacy for hemophilia A. J Biol Chem. 2021;297:101397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vowells SJ, Sekhsaria S, Malech HL, Shalit M, Fleisher TA. Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes. J Immunol Meth. 1995;178:89–97.

    Article  CAS  Google Scholar 

  26. Pujol A, Hindelang C, Callizot N, Bartsch U, Schachner M, Mandel JL. Late onset neurological phenotype of the X-ALD gene inactivation in mice: a mouse model for adrenomyeloneuropathy. Hum Mol Genet. 2002;11:499–505.

    Article  CAS  PubMed  Google Scholar 

  27. Lu JF, Lawler AM, Watkins PA, Powers JM, Moser AB, Moser HW, et al. A mouse model for X-linked adrenoleukodystrophy. Proc Natl Acad Sci USA. 1997;94:9366–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kobayashi T, Shinnoh N, Kondo A, Yamada T. Adrenoleukodystrophy protein-deficient mice represent abnormality of very long chain fatty acid metabolism. Bioch and Biophys Res Comm. 1997;232:5.

    Article  Google Scholar 

  29. Turk BR, Theda C, Fatemi A, Moser AB. X-linked adrenoleukodystrophy: pathology, pathophysiology, diagnostic testing, newborn screening and therapies. Int J Dev Neurosci. 2020;80:52–72.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Igarashi M, Schaumburg HH, Powers J, Kishmoto Y, Kolodny E, Suzuki K. Fatty acid abnormality in adrenoleukodystrophy. J Neurochem. 1976;26:851–60.

    Article  CAS  PubMed  Google Scholar 

  31. Vargas CR, Wajner M, Sirtori LR, Goulart L, Chiochetta M, Coelho D, et al. Evidence that oxidative stress is increased in patients with X-linked adrenoleukodystrophy. Biochim Biophys Acta. 2004;1688:26–32.

    Article  CAS  PubMed  Google Scholar 

  32. Uto T, Contreras MA, Gilg AG, Singh I. Oxidative imbalance in nonstimulated X-adrenoleukodystrophy-derived lymphoblasts. Dev Neurosci. 2008;30:410–8.

    Article  CAS  PubMed  Google Scholar 

  33. Di Biase A, Di Benedetto R, Fiorentini C, Travaglione S, Salvati S, Attorri L, et al. Free radical release in C6 glial cells enriched in hexacosanoic acid: Implication for X-linked adrenoleukodystrophy pathogenesis. Neurochem Int. 2004;44:215–21.

    Article  PubMed  Google Scholar 

  34. Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-associated virus-based gene therapy for CNS diseases. Hum Gene Ther. 2016;27:478–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen Y, Zheng S, Tecedor L, Davidson BL. Overcoming limitations inherent in sulfamidase to improve mucopolysaccharidosis IIIa gene therapy. Mol Ther. 2018;26:1118–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fu H, Meadows AS, Ware T, Mohney RP, McCarty DM. Near-complete correction of profound metabolomic impairments corresponding to functional benefit in MPS IIIb mice after IV rAAV9-hNAGLU gene delivery. Mol Ther. 2017;25:792–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tardieu M, Zerah M, Husson B, de Bournonville S, Deiva K, Adamsbaum C, et al. Intracerebral administration of adeno-associated viral vector serotype rh.10 carrying human SGSH and SUMF1 cDNAs in children with mucopolysaccharidosis type IIIa disease: results of a phase I/II trial. Hum Gene Ther. 2014;25:506–16.

    Article  CAS  PubMed  Google Scholar 

  38. Liu W, Zhao L, Blackman B, Parmar M, Wong MY, Woo T, et al. Vectored intracerebral immunization with the anti-Tau monoclonal antibody PHF1 markedly reduces Tau pathology in mutant Tau transgenic mice. J Neurosci. 2016;36:12425–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McIntyre C, Derrick-Roberts ALK, Byers S, Anson DS. Correction of murine mucopolysaccharidosis type IIIa central nervous system pathology by intracerebroventricular lentiviral-mediated gene delivery. J Gene Med. 2014;16:374–87.

    Article  CAS  PubMed  Google Scholar 

  40. Lattanzi A, Salvagno C, Maderna C, Benedicenti F, Morena F, Kulik W, et al. Therapeutic benefit of lentiviral-mediated neonatal intracerebral gene therapy in a mouse model of globoid cell leukodystrophy. Hum Mol Genet. 2014;23:3250–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mandel RJ, Burger C, Snyder RO. Viral vectors for in vivo gene transfer in Parkinson’s disease: Properties and clinical grade production. Exp Neurol. 2008;209:58–71.

    Article  CAS  PubMed  Google Scholar 

  42. Choudhury SR, Hudry E, Maguire CA, Sena-Esteves M, Breakefield XO, Grandi P. Viral vectors for therapy of neurologic diseases. Neuropharmacology. 2017;120:63–80.

    Article  CAS  PubMed  Google Scholar 

  43. Low K, Aebischer P. Use of viral vectors to create animal models for Parkinson’s disease. Neurobiol Dis. 2012;48:189–201.

    Article  PubMed  Google Scholar 

  44. Ingusci S, Verlengia G, Soukupova M, Zucchini S, Simonato M. Gene therapy tools for brain diseases. Front Pharmacol. 2019;10:724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gong Y, Mu D, Prabhakar S, Moser A, Musolino P, Ren J, et al. Adenoassociated virus serotype 9-mediated gene therapy for X-linked adrenoleukodystrophy. Mol Ther. 2015;23:824–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum (London, England). 2014;13:151–77.

    Article  PubMed  Google Scholar 

  47. Samson M, Claassen DO. Neurodegeneration and the cerebellum. Neurodegener Dis. 2017;17:155–65.

    Article  PubMed  Google Scholar 

  48. Ribera A, Haurigot V, Garcia M, Marco S, Motas S, Villacampa P, et al. Biochemical, histological and functional correction of mucopolysaccharidosis type IIIb by intra-cerebrospinal fluid gene therapy. Hum Mol Genet. 2015;24:2078–95.

    Article  CAS  PubMed  Google Scholar 

  49. Chu BB, Liao YC, Qi W, Xie C, Du X, Wang J, et al. Cholesterol transport through lysosome-peroxisome membrane contacts. Cell. 2015;161:291–306.

    Article  CAS  PubMed  Google Scholar 

  50. Casasnovas C, Ruiz M, Schluter A, Naudi A, Fourcade S, Veciana M, et al. Biomarker identification, safety, and efficacy of high-dose antioxidants for adrenomyeloneuropathy: A phase II pilot study. Neurotherapeutics. 2019;16:1167–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gong Y, Berenson A, Laheji F, Gao G, Wang D, Ng C, et al. Intrathecal adeno-associated viral vector-mediated gene delivery for adrenomyeloneuropathy. Hum Gene Ther. 2019;30:544–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the UESTC and GIMI teams for their participation in discussion and laboratory support.

Funding

This study was funded by China Postdoctoral Science Foundation Grant (No.2018M643439) to THC, Foundation for Introduction and Training of Outstanding Scholarship of the National “985” Project (Project 985: A1098531023601102), The Fundamental Research Funds for the Central Universities (ZYGX2016Z009), and Science and Technology Planning Technical Research Project of Shenzhen (JCYJ20160229170523065 and KQTD20140630143254906).

Author information

Authors and Affiliations

Authors

Contributions

LJC and THC conceptualized, supervised, and administered the investigation; LJC engineered and constructed the lentiviral vectors; JG, YYL, THC, and LX developed the methodologies; visualization was done by JG, YYL, THC, and LX; LJC and THC acquired the funding; JG, YYL, and THC drafted and LJC and TCL revised the manuscript; all participated in discussion, reviewed and approved the final manuscript.

Corresponding author

Correspondence to Lung-Ji Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Liu, Y., Chung, TH. et al. Intracerebral lentiviral ABCD1 gene therapy in an early disease onset ALD mouse model. Gene Ther 30, 18–30 (2023). https://doi.org/10.1038/s41434-022-00355-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-022-00355-0

This article is cited by

Search

Quick links