Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4

Abstract

Promising clinical results have been achieved with monoclonal antibodies (mAbs) such as ipilimumab and tremelimumab that block cytotoxic T lymphocyte-associated antigen-4 (CTLA-4, CD152). However, systemic administration of these agents also has the potential for severe immune-related adverse events. Thus, local production might allow higher concentrations at the target while reducing systemic side effects. We generated a transductionally and transcriptionally targeted oncolytic adenovirus Ad5/3-Δ24aCTLA4 expressing complete human mAb specific for CTLA-4 and tested it in vitro, in vivo and in peripheral blood mononuclear cells (PBMCs) of normal donors and patients with advanced solid tumors. mAb expression was confirmed by western blotting and immunohistochemistry. Biological functionality was determined in a T-cell line and in PBMCs from cancer patients. T cells of patients, but not those of healthy donors, were activated by an anti-CTLA4mAb produced by Ad5/3-Δ24aCTLA4. In addition to immunological effects, a direct anti-CTLA-4-mediated pro-apoptotic effect was observed in vitro and in vivo. Local production resulted in 43-fold higher (P<0.05) tumor versus plasma anti-CTLA4mAb concentration. Plasma levels in mice remained below what has been reported safe in humans. Replication-competent Ad5/3-Δ24aCTLA4 resulted in 81-fold higher (P<0.05) tumor mAb levels as compared with a replication-deficient control. This is the first report of an oncolytic adenovirus producing a full-length human mAb. High mAb concentrations were seen at tumors with lower systemic levels. Stimulation of T cells of cancer patients by Ad5/3-Δ24aCTLA4 suggests feasibility of testing the approach in clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dranoff G . Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 2004; 4: 11–22.

    Article  CAS  PubMed  Google Scholar 

  2. de Visser KE, Eichten A, Coussens LM . Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 2006; 6: 24–37.

    Article  CAS  PubMed  Google Scholar 

  3. Leach DR, Krummel MF, Allison JP . Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996; 271: 1734–1736.

    Article  CAS  PubMed  Google Scholar 

  4. Kwon ED, Foster BA, Hurwitz AA, Madias C, Allison JP, Greenberg NM et al. Elimination of residual metastatic prostate cancer after surgery and adjunctive cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade immunotherapy. Proc Natl Acad Sci USA 1999; 96: 15074–15079.

    Article  CAS  PubMed  Google Scholar 

  5. Kirkwood JM, Lorigan P, Hersey P, Hauschild A, Robert C, McDermott D et al. Phase II trial of tremelimumab (CP-675206) in patients with advanced refractory or relapsed melanoma. Clin Cancer Res 2010; 16: 1042–1048.

    Article  CAS  PubMed  Google Scholar 

  6. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711–723.

    Article  CAS  PubMed  Google Scholar 

  7. Ribas A, Hanson DC, Noe DA, Millham R, Guyot DJ, Bernstein SH et al. Tremelimumab (CP-675206), a cytotoxic T lymphocyte associated antigen 4 blocking monoclonal antibody in clinical development for patients with cancer. Oncologist 2007; 12: 873–883.

    Article  CAS  PubMed  Google Scholar 

  8. Lee KM, Chuang E, Griffin M, Khattri R, Hong DK, Zhang W et al. Molecular basis of T cell inactivation by CTLA-4. Science 1998; 282: 2263–2266.

    Article  CAS  PubMed  Google Scholar 

  9. Paradis TJ, Floyd E, Burkwit J, Cole SH, Brunson B, Elliott E et al. The antitumor activity of anti-CTLA-4 is mediated through its induction of IFN gamma. Cancer Immunol Immunother 2001; 50: 125–133.

    Article  CAS  PubMed  Google Scholar 

  10. Chambers CA, Kuhns MS, Egen JG, Allison JP . CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 2001; 19: 565–594.

    Article  CAS  PubMed  Google Scholar 

  11. Paust S, Lu L, McCarty N, Cantor H . Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci USA 2004; 101: 10398–10403.

    Article  CAS  PubMed  Google Scholar 

  12. Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 2004; 114: 280–290.

    Article  CAS  PubMed  Google Scholar 

  13. Contardi E, Palmisano GL, Tazzari PL, Martelli AM, Fala F, Fabbi M et al. CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int J Cancer 2005; 117: 538–550.

    Article  CAS  PubMed  Google Scholar 

  14. Jinushi M, Hodi FS, Dranoff G . Therapy-induced antibodies to MHC class I chain-related protein A antagonize immune suppression and stimulate antitumor cytotoxicity. Proc Natl Acad Sci USA 2006; 103: 9190–9195.

    Article  CAS  PubMed  Google Scholar 

  15. Sanderson K, Scotland R, Lee P, Liu D, Groshen S, Snively J et al. Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and Montanide ISA 51 for patients with resected stages III and IV melanoma. J Clin Oncol 2005; 23: 741–750.

    Article  CAS  PubMed  Google Scholar 

  16. Russell WC . Update on adenovirus and its vectors. J Gen Virol 2000; 81: 2573–2604.

    Article  CAS  Google Scholar 

  17. Kanerva A, Hemminki A . Modified adenoviruses for cancer gene therapy. Int J Cancer 2004; 110: 475–480.

    Article  CAS  PubMed  Google Scholar 

  18. Dias JD, Guse K, Nokisalmi P, Eriksson M, Chen DT, Diaconu I et al. Multimodal approach using oncolytic adenovirus, cetuximab, chemotherapy and radiotherapy in HNSCC low passage tumour cell cultures. Eur J Cancer 2009; 46: 625–635.

    Article  PubMed  Google Scholar 

  19. Rajecki M, Kanerva A, Stenman UH, Tenhunen M, Kangasniemi L, Sarkioja M et al. Treatment of prostate cancer with Ad5/3Delta24hCG allows non-invasive detection of the magnitude and persistence of virus replication in vivo. Mol Cancer Ther 2007; 6: 742–751.

    Article  CAS  PubMed  Google Scholar 

  20. Kanerva A, Wang M, Bauerschmitz GJ, Lam JT, Desmond RA, Bhoola SM et al. Gene transfer to ovarian cancer versus normal tissues with fiber-modified adenoviruses. Mol Ther 2002; 5: 695–704.

    Article  CAS  PubMed  Google Scholar 

  21. Särkioja M, Kanerva A, Salo J, Kangasniemi L, Eriksson M, Raki M et al. Noninvasive imaging for evaluation of the systemic delivery of capsid-modified adenoviruses in an orthotopic model of advanced lung cancer. Cancer 2006; 107: 1578–1588.

    Article  Google Scholar 

  22. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000; 19: 2–12.

    Article  CAS  Google Scholar 

  23. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A et al. An adenovirus E1A mutant that demonstrates potent and selective systemic antitumoral efficacy. Nat Med 2000; 6: 1134–1139.

    Article  CAS  Google Scholar 

  24. Sherr CJ . Cancer cell cycles. Science 1996; 274: 1672–1677.

    Article  CAS  PubMed  Google Scholar 

  25. Bauerschmitz GJ, Guse K, Kanerva A, Menzel A, Herrmann I, Desmond RA et al. Triple-targeted oncolytic adenoviruses featuring the cox2 promoter, E1A transcomplementation, and serotype chimerism for enhanced selectivity for ovarian cancer cells. Mol Ther 2006; 14: 164–174.

    Article  CAS  Google Scholar 

  26. Kanerva A, Zinn KR, Chaudhuri TR, Lam JT, Suzuki K, Uil TG et al. Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor-targeted oncolytic adenovirus. Mol Ther 2003; 8: 449–458.

    Article  CAS  PubMed  Google Scholar 

  27. Greenwald RJ, Boussiotis VA, Lorsbach RB, Abbas AK, Sharpe AH . CTLA-4 regulates induction of anergy in vivo. Immunity 2001; 14: 145–155.

    Article  CAS  Google Scholar 

  28. Krummel MF, Allison JP . CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 1996; 183: 2533–2540.

    Article  CAS  Google Scholar 

  29. Kanerva A, Zinn KR, Peng KW, Ranki T, Kangasniemi L, Chaudhuri TR et al. Noninvasive dual modality in vivo monitoring of the persistence and potency of a tumor targeted conditionally replicating adenovirus. Gene therapy 2005; 12: 87–94.

    Article  CAS  Google Scholar 

  30. Kennedy MA, Parks RJ . Adenovirus virion stability and the viral genome: size matters. Mol Ther 2009; 17: 1664–1666.

    Article  CAS  PubMed  Google Scholar 

  31. Ribas A . Anti-CTLA4 antibody clinical trials in melanoma. Update Cancer Ther 2007; 2: 133–139.

    Article  PubMed  Google Scholar 

  32. Hanson DC, Canniff PC, Primiano MJ et al. Preclinical in vitro characterization of anti-CTLA4 therapeutic antibody CP-675206. Proc Am Assoc Cancer Res 2004; 45: abstract #3802.

  33. Weber JS, O’Day S, Urba W, Powderly J, Nichol G, Yellin M et al. Phase I/II study of ipilimumab for patients with metastatic melanoma. J Clin Oncol 2008; 26: 5950–5956.

    Article  CAS  PubMed  Google Scholar 

  34. Ribas A, Camacho LH, Lopez-Berestein G, Pavlov D, Bulanhagui CA, Millham R et al. Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675206. J Clin Oncol 2005; 23: 8968–8977.

    Article  CAS  PubMed  Google Scholar 

  35. Tarhini AA, Iqbal F . CTLA-4 blockade: therapeutic potential in cancer treatments. Onco Targets Ther 2010; 3: 15–25.

    Article  CAS  PubMed  Google Scholar 

  36. Stagg J, Johnstone RW, Smyth MJ . From cancer immunosurveillance to cancer immunotherapy. Immunol Rev 2007; 220: 82–101.

    Article  CAS  PubMed  Google Scholar 

  37. Parkin DM, Bray F, Ferlay J, Pisani P . Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74–108.

    Article  PubMed  Google Scholar 

  38. Harvey BG, Maroni J, O’Donoghue KA, Chu KW, Muscat JC, Pippo AL et al. Safety of local delivery of low- and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of morbid conditions. Hum Gene Ther 2002; 13: 15–63.

    Article  CAS  PubMed  Google Scholar 

  39. Dias JD, Liikanen I, Guse K, Foloppe J, Sloniecka M, Diaconu I et al. Targeted chemotherapy for head and neck cancer with a chimeric oncolytic adenovirus coding for bifunctional suicide protein FCU1. Clin Cancer Res 2010; 16: 2540–2549.

    Article  CAS  PubMed  Google Scholar 

  40. Cerullo V, Pesonen S, Diaconu I, Escutenaire S, Arstila PT, Ugolini M et al. Oncolytic adenovirus coding for granulocyte macrophage colony-stimulating factor induces antitumoral immunity in cancer patients. Cancer Res 2010; 70: 4297–4309.

    Article  CAS  Google Scholar 

  41. Koski A, Kangasniemi L, Escutenaire S, Pesonen S, Cerullo V, Diaconu I et al. Treatment of cancer patients with a serotype 5/3 chimeric oncolytic adenovirus expressing GMCSF. Mol Ther 2010; 18: 1874–1884.

    Article  CAS  PubMed  Google Scholar 

  42. Ribas A, Hauschild A, Kefford R et al. Phase III, open-label, randomized, comparative study of tremelimumab (CP-675206) and chemotherapy (temozolomide [TMZ] or dacarbazine [DTIC]) in patients with advanced melanoma. J Clin Oncol 2008; 26 (Suppl): abstract LBA9011.

    Article  Google Scholar 

  43. Simmons AD, Moskalenko M, Creson J, Fang J, Yi S, VanRoey MJ et al. Local secretion of anti-CTLA-4 enhances the therapeutic efficacy of a cancer immunotherapy with reduced evidence of systemic autoimmunity. Cancer Immunol Immunother 2008; 57: 1263–1270.

    Article  CAS  PubMed  Google Scholar 

  44. Mokyr MB, Kalinichenko T, Gorelik L, Bluestone JA . Realization of the therapeutic potential of CTLA-4 blockade in low-dose chemotherapy-treated tumor-bearing mice. Cancer Res 1998; 58: 5301–5304.

    CAS  PubMed  Google Scholar 

  45. Wolchok JD, Saenger Y . The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation. Oncologist 2008; 13 (Suppl 4): 2–9.

    Article  CAS  PubMed  Google Scholar 

  46. Bruggemann M, Williams GT, Bindon CI, Clark MR, Walker MR, Jefferis R et al. Comparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodies. J Exp Med 1987; 166: 1351–1361.

    Article  CAS  PubMed  Google Scholar 

  47. McCart JA, Puhlmann M, Lee J, Hu Y, Libutti SK, Alexander HR et al. Complex interactions between the replicating oncolytic effect and the enzyme/prodrug effect of vaccinia-mediated tumor regression. Gene Ther 2000; 7: 1217–1223.

    Article  CAS  Google Scholar 

  48. Nakamura H, Mullen JT, Chandrasekhar S, Pawlik TM, Yoon SS, Tanabe KK . Multimodality therapy with a replication-conditional herpes simplex virus 1 mutant that expresses yeast cytosine deaminase for intratumoral conversion of 5-fluorocytosine to 5-fluorouracil. Cancer Res 2001; 61: 5447–5452.

    CAS  Google Scholar 

  49. Bashey A, Medina B, Corringham S, Pasek M, Carrier E, Vrooman L et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood 2009; 113: 1581–1588.

    Article  CAS  PubMed  Google Scholar 

  50. Vonderheide RH, LoRusso PM, Khalil M, Gartner EM, Khaira D, Soulieres D et al. Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin Cancer Res 2010; 16: 3485–3494.

    Article  CAS  Google Scholar 

  51. Tuve S, Chen BM, Liu Y, Cheng TL, Toure P, Sow PS et al. Combination of tumor site-located CTL-associated antigen-4 blockade and systemic regulatory T-cell depletion induces tumor-destructive immune responses. Cancer Res 2007; 67: 5929–5939.

    Article  CAS  Google Scholar 

  52. Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME, Allison JP et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 2001; 194: 823–832.

    Article  CAS  PubMed  Google Scholar 

  53. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192: 303–310.

    Article  CAS  PubMed  Google Scholar 

  54. Erjala K, Sundvall M, Junttila TT, Zhang N, Savisalo M, Mali P et al. Signaling via ErbB2 and ErbB3 associates with resistance and epidermal growth factor receptor (EGFR) amplification with sensitivity to EGFR inhibitor gefitinib in head and neck squamous cell carcinoma cells. Clin Cancer Res 2006; 12: 4103–4111.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Päivi Hannuksela, Sirkka-Liisa Holm, Eerika Karli and Aila Karioja-Kallio for technical assistance. Financial support: Financial support was received from Helsinki Biomedical Graduate School, European Research Council, Helsinki University Central Hospital, Sigrid Juselius Foundation, Academy of Finland, Emil Aaltonen Foundation, ASCO Foundation, Biocenter Finland, the Biomedicum Foundation, Finnish Cancer Society, Biocentrum Helsinki, the K Albin Johansson Foundation, University of Helsinki and the Finnish Cultural Foundation. Akseli Hemminki is K Albin Johansson Research Professor of the Foundation for the Finnish Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V Cerullo or A Hemminki.

Ethics declarations

Competing interests

Akseli Hemminki is cofounder and shareholder in Oncos Therapeutics Ltd.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, J., Hemminki, O., Diaconu, I. et al. Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4. Gene Ther 19, 988–998 (2012). https://doi.org/10.1038/gt.2011.176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.176

Keywords

This article is cited by

Search

Quick links