Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Novel adeno-associated viral vectors for retinal gene therapy

An Erratum to this article was published on 24 November 2011

Abstract

Vectors derived from adeno-associated virus (AAV) are currently the most promising vehicles for therapeutic gene delivery to the retina. Recently, subretinal administration of AAV2 has been demonstrated to be safe and effective in patients with a rare form of inherited childhood blindness, suggesting that AAV-mediated retinal gene therapy may be successfully extended to other blinding conditions. This is further supported by the great versatility of AAV as a vector platform as there are a large number of AAV variants and many of these have unique transduction characteristics useful for targeting different cell types in the retina including glia, epithelium and many types of neurons. Naturally occurring, rationally designed or in vitro evolved AAV vectors are currently being utilized to transduce several different cell types in the retina and to treat a variety of animal models of retinal disease. The continuous and creative development of AAV vectors provides opportunities to overcome existing challenges in retinal gene therapy such as efficient transfer of genes exceeding AAV's cargo capacity, or the targeting of specific cells within the retina or transduction of photoreceptors following routinely used intravitreal injections. Such developments should ultimately advance the treatment of a wide range of blinding retinal conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hermonat PL, Muzyczka N . Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci USA 1984; 81: 6466–6470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Samulski RJ, Berns KI, Tan M, Muzyczka N . Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci USA 1982; 79: 2077–2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tratschin JD, West MH, Sandbank T, Carter BJ . A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol 1984; 4: 2072–2081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Laughlin CA, Tratschin JD, Coon H, Carter BJ . Cloning of infectious adeno-associated virus genomes in bacterial plasmids. Gene 1983; 23: 65–73.

    Article  CAS  PubMed  Google Scholar 

  5. Fields BN, Knipe DM, Howley PM . Fields Virology, 5th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, 2007.

    Google Scholar 

  6. Carter BJ . Adeno-associated virus vectors in clinical trials. Hum Gene Ther 2005; 16: 541–550.

    Article  CAS  PubMed  Google Scholar 

  7. Gao G, Vandenberghe LH, Wilson JM . New recombinant serotypes of AAV vectors. Curr Gene Ther 2005; 5: 285–297.

    Article  CAS  PubMed  Google Scholar 

  8. Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM . Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis 2009; 199: 381–390.

    Article  PubMed  Google Scholar 

  9. Auricchio A, Kobinger G, Anand V, Hildinger M, O’Connor E, Maguire AM et al. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet 2001; 10: 3075–3081.

    Article  CAS  PubMed  Google Scholar 

  10. Arbetman AE, Lochrie M, Zhou S, Wellman J, Scallan C, Doroudchi MM et al. Novel caprine adeno-associated virus (AAV) capsid (AAV-Go.1) is closely related to the primate AAV-5 and has unique tropism and neutralization properties. J Virol 2005; 79: 15238–15245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bossis I, Chiorini JA . Cloning of an avian adeno-associated virus (AAAV) and generation of recombinant AAAV particles. J Virol 2003; 77: 6799–6810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmidt M, Katano H, Bossis I, Chiorini JA . Cloning and characterization of a bovine adeno-associated virus. J Virol 2004; 78: 6509–6516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lochrie MA, Tatsuno GP, Arbetman AE, Jones K, Pater C, Smith PH et al. Adeno-associated virus (AAV) capsid genes isolated from rat and mouse liver genomic DNA define two new AAV species distantly related to AAV-5. Virology 2006; 353: 68–82.

    Article  CAS  PubMed  Google Scholar 

  14. Bello A, Tran K, Chand A, Doria M, Allocca M, Hildinger M et al. Isolation and evaluation of novel adeno-associated virus sequences from porcine tissues. Gene Therapy 2009; 16: 1320–1328.

    Article  CAS  PubMed  Google Scholar 

  15. Nam HJ, Lane MD, Padron E, Gurda B, McKenna R, Kohlbrenner E et al. Structure of adeno-associated virus serotype 8, a gene therapy vector. J Virol 2007; 81: 12260–12271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xie Q, Bu W, Bhatia S, Hare J, Somasundaram T, Azzi A et al. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 10405–10410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M et al. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA 2008; 105: 7827–7832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Petrs-Silva H, Dinculescu A, Li Q, Min SH, Chiodo V, Pang JJ et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 2009; 17: 463–471.

    Article  CAS  PubMed  Google Scholar 

  19. Petrs-Silva H, Dinculescu A, Li Q, Deng WT, Pang JJ, Min SH et al. Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 2011; 19: 293–301.

    Article  CAS  PubMed  Google Scholar 

  20. Pang JJ, Dai X, Boye SE, Barone I, Boye SL, Mao S et al. Long-term retinal function and structure rescue using capsid mutant AAV8 vector in the rd10 mouse, a model of recessive retinitis pigmentosa. Mol Ther 2011; 19: 234–242.

    Article  CAS  PubMed  Google Scholar 

  21. Perabo L, Huber A, Marsch S, Hallek M, Buning H . Artificial evolution with adeno-associated viral libraries. Comb Chem High Throughput Screen 2008; 11: 118–126.

    Article  CAS  PubMed  Google Scholar 

  22. Klimczak RR, Koerber JT, Dalkara D, Flannery JG, Schaffer DV . A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Muller cells. PloS One 2009; 4: e7467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dalkara D, Kolstad KD, Caporale N, Visel M, Klimczak RR, Schaffer DV et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther 2009; 17: 2096–2102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang FQ, Anand V, Maguire AM, Bennett J . Intraocular delivery of recombinant virus. Methods Mol Med 2001; 47: 125–139.

    CAS  PubMed  Google Scholar 

  25. Ali RR, Reichel MB, De Alwis M, Kanuga N, Kinnon C, Levinsky RJ et al. Adeno-associated virus gene transfer to mouse retina. Hum Gene Ther 1998; 9: 81–86.

    Article  CAS  PubMed  Google Scholar 

  26. Vandenberghe LH, Bell P, Maguire AM, Cearley CN, Xiao R, Calcedo R et al. Dosage thresholds for AAV2 and AAV8 photoreceptor gene therapy in monkey. Sci Transl Med 2011; 3: 88ra54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 2008; 358: 2231–2239.

    Article  CAS  PubMed  Google Scholar 

  28. Lukason M, Dufresne E, Rubin H, Pechan P, Li Q, Kim I et al. Inhibition of choroidal neovascularization in a nonhuman primate model by intravitreal administration of an AAV2 vector expressing a novel anti-VEGF molecule. Mol Ther 2011; 19: 260–265.

    Article  CAS  PubMed  Google Scholar 

  29. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 2008; 19: 979–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 2008; 358: 2240–2248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F et al. Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. Lancet 2009; 374: 1597–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mancuso K, Hauswirth WW, Li Q, Connor TB, Kuchenbecker JA, Mauck MC et al. Gene therapy for red-green colour blindness in adult primates. Nature 2009; 461: 784–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Komaromy AM, Alexander JJ, Rowlan JS, Garcia MM, Chiodo VA, Kaya A et al. Gene therapy rescues cone function in congenital achromatopsia. Hum Mol Genet 2010; 19: 2581–2593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beltran WA, Boye SL, Boye SE, Chiodo VA, Lewin AS, Hauswirth WW et al. rAAV2/5 gene-targeting to rods:dose-dependent efficiency and complications associated with different promoters. Gene Therapy 2010; 17: 1162–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weber M, Rabinowitz J, Provost N, Conrath H, Folliot S, Briot D et al. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther 2003; 7: 774–781.

    Article  CAS  PubMed  Google Scholar 

  36. US Food and Drug Administration Advisory Committee on Cellular TaGT. Center for biologics evaluation and research: cellular and gene therapies for retinal disorders. In: http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/BloodVaccinesandOtherBiologics/CellularTissueandGeneTherapiesAdvisoryCommittee/UCM267068.pdf, 2011.

  37. Barker SE, Broderick CA, Robbie SJ, Duran Y, Natkunarajah M, Buch P et al. Subretinal delivery of adeno-associated virus serotype 2 results in minimal immune responses that allow repeat vector administration in immunocompetent mice. J Gene Med 2009; 11: 486–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Annear MJ, Bartoe JT, Barker SE, Smith AJ, Curran PG, Bainbridge JW et al. Gene therapy in the second eye of RPE65-deficient dogs improves retinal function. Gene Therapy 2011; 18: 53–61.

    Article  CAS  PubMed  Google Scholar 

  39. Amado D, Mingozzi F, Hui D, Bennicelli JL, Wei Z, Chen Y et al. Safety and efficacy of subretinal readministration of a viral vector in large animals to treat congenital blindness. Sci Transl Med 2010; 2: 21ra16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bainbridge JW, Mistry A, Schlichtenbrede FC, Smith A, Broderick C, De Alwis M et al. Stable rAAV-mediated transduction of rod and cone photoreceptors in the canine retina. Gene Therapy 2003; 10: 1336–1344.

    Article  CAS  PubMed  Google Scholar 

  41. Bennett J, Maguire AM, Cideciyan AV, Schnell M, Glover E, Anand V et al. Stable transgene expression in rod photoreceptors after recombinant adeno-associated virus-mediated gene transfer to monkey retina. Proc Natl Acad Sci USA 1999; 96: 9920–9925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Allocca M, Manfredi A, Iodice C, Di Vicino U, Auricchio A . AAV-mediated gene replacement either alone or in combination with physical and pharmacological agents results in partial and transi. Invest Ophthalmol Vis Sci 2011; 52: 5713–5719.

    Article  CAS  PubMed  Google Scholar 

  43. Sohocki MM, Daiger SP, Bowne SJ, Rodriquez JA, Northrup H, Heckenlively JR et al. Prevalence of mutations causing retinitis pigmentosa and other inherited retinopathies. Hum Mutat 2001; 17: 42–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dryja T . Retinitis pigmentosa and stationary night blindness. In: Valle D, Beaudet A, Vogelstein B, Kinzier K, Antonarakis S, Ballabio A (eds). The Online Metabolic and Molecular Bases of Inherited Disease. McGrawHill: New York, St. Louis, San Francisco, 2001.

    Google Scholar 

  45. Ali RR, Reichel MB, Thrasher AJ, Levinsky RJ, Kinnon C, Kanuga N et al. Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet 1996; 5: 591–594.

    Article  CAS  PubMed  Google Scholar 

  46. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001; 28: 92–95.

    CAS  PubMed  Google Scholar 

  47. Ali RR, Sarra GM, Stephens C, Alwis MD, Bainbridge JW, Munro PM et al. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet 2000; 25: 306–310.

    Article  CAS  PubMed  Google Scholar 

  48. Pawlyk BS, Smith AJ, Buch PK, Adamian M, Hong DH, Sandberg MA et al. Gene replacement therapy rescues photoreceptor degeneration in a murine model of Leber congenital amaurosis lacking RPGRIP. Invest Ophthalmol Vis Sci 2005; 46: 3039–3045.

    Article  PubMed  Google Scholar 

  49. Kjellstrom S, Bush RA, Zeng Y, Takada Y, Sieving PA . Retinoschisin gene therapy and natural history in the Rs1h-KO mouse: long-term rescue from retinal degeneration. Invest Ophthalmol Vis Sci 2007; 48: 3837–3845.

    Article  PubMed  Google Scholar 

  50. Tan MH, Smith AJ, Pawlyk B, Xu X, Liu X, Bainbridge JB et al. Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIPL1: effective rescue of mouse models of partial and complete Aipl1 deficiency using AAV2/2 and AAV2/8 vectors. Hum Mol Genet 2009; 18: 2099–2114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 2002; 76: 791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang GS, Schmidt M, Yan Z, Lindbloom JD, Harding TC, Donahue BA et al. Virus-mediated transduction of murine retina with adeno-associated virus: effects of viral capsid and genome size. J Virol 2002; 76: 7651–7660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lotery AJ, Yang GS, Mullins RF, Russell SR, Schmidt M, Stone EM et al. Adeno-associated virus type 5: transduction efficiency and cell-type specificity in the primate retina. Hum Gene Ther 2003; 14: 1663–1671.

    Article  CAS  PubMed  Google Scholar 

  54. Min SH, Molday LL, Seeliger MW, Dinculescu A, Timmers AM, Janssen A et al. Prolonged recovery of retinal structure/function after gene therapy in an Rs1h-deficient mouse model of x-linked juvenile retinoschisis. Mol Ther 2005; 12: 644–651.

    Article  CAS  PubMed  Google Scholar 

  55. Alexander JJ, Umino Y, Everhart D, Chang B, Min SH, Li Q et al. Restoration of cone vision in a mouse model of achromatopsia. Nat Med 2007; 13: 685–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pang JJ, Boye SL, Kumar A, Dinculescu A, Deng W, Li J et al. AAV-mediated gene therapy for retinal degeneration in the rd10 mouse containing a recessive PDEbeta mutation. Invest Ophthalmol Vis Sci 2008; 49: 4278–4283.

    Article  PubMed  Google Scholar 

  57. Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S, Heckenlively JR . Retinal degeneration mutants in the mouse. Vision Res 2002; 42: 517–525.

    Article  CAS  PubMed  Google Scholar 

  58. Natkunarajah M, Trittibach P, McIntosh J, Duran Y, Barker SE, Smith AJ et al. Assessment of ocular transduction using single-stranded and self-complementary recombinant adeno-associated virus serotype 2/8. Gene Therapy 2008; 15: 463–467.

    Article  CAS  PubMed  Google Scholar 

  59. Allocca M, Mussolino C, Garcia-Hoyos M, Sanges D, Iodice C, Petrillo M et al. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol 2007; 81: 11372–11380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mussolino C, Della Corte M, Rossi S, Viola F, Di Vicino U, Marrocco E et al. AAV-mediated photoreceptor transduction of the pig cone-enriched retina. Gene Therapy 2011; 18: 637–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stieger K, Colle MA, Dubreil L, Mendes-Madeira A, Weber M, Le Meur G et al. Subretinal delivery of recombinant AAV serotype 8 vector in dogs results in gene transfer to neurons in the brain. Mol Ther 2008; 16: 916–923.

    Article  CAS  PubMed  Google Scholar 

  62. Pang JJ, Dai X, Boye SE, Barone I, Boye SL, Mao S et al. Long-term retinal function and structure rescue using capsid mutant AAV8 vector in the rd10 mouse, a model of recessive retinitis pigmentosa. Mol Ther 2011; 19: 234–242.

    Article  CAS  PubMed  Google Scholar 

  63. Carvalho LS, Xu J, Pearson RA, Smith AJ, Bainbridge JW, Morris LM et al. Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy. Hum Mol Genet 2011; 20: 3161–3175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mihelec M, Pearson RA, Robbie SJ, Buch PK, Azam SA, Bainbridge JW et al. Long-term preservation of cones and improvement in visual function following gene therapy in a mouse model of leber congenital amaurosis caused by guanylate cyclase-1 deficiency. Hum Gene Ther; Epub ahead of print 10 August 2011.

  65. Allocca M, Doria M, Petrillo M, Colella P, Garcia-Hoyos M, Gibbs D et al. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J Clin Invest 2008; 118: 1955–1964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hirsch ML, Agbandje-McKenna M, Samulski RJ . Little vector, big gene transduction: fragmented genome reassembly of adeno-associated virus. Mol Ther 2010; 18: 6–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Smith AJ, Schlichtenbrede FC, Tschernutter M, Bainbridge JW, Thrasher AJ, Ali RR . AAV-Mediated gene transfer slows photoreceptor loss in the RCS rat model of retinitis pigmentosa. Mol Ther 2003; 8: 188–195.

    Article  CAS  PubMed  Google Scholar 

  68. Weber M, Rabinowitz J, Provost N, Conrath H, Folliot S, Briot D et al. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther 2003; 7: 774–781.

    Article  CAS  PubMed  Google Scholar 

  69. Stieger K, Chauveau C, Rolling F . Preclinical studies on specific gene therapy for recessive retinal degenerative diseases. Curr Gene Ther 2010; 10: 389–403.

    Article  CAS  PubMed  Google Scholar 

  70. Narfstrom K, Katz ML, Bragadottir R, Seeliger M, Boulanger A, Redmond TM et al. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog. Invest Ophthalmol Vis Sci 2003; 44: 1663–1672.

    Article  PubMed  Google Scholar 

  71. Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, Bennicelli J et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther 2005; 12: 1072–1082.

    Article  CAS  PubMed  Google Scholar 

  72. Le Meur G, Stieger K, Smith AJ, Weber M, Deschamps JY, Nivard D et al. Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Therapy 2007; 14: 292–303.

    Article  CAS  PubMed  Google Scholar 

  73. Li Q, Miller R, Han PY, Pang J, Dinculescu A, Chiodo V et al. Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential. Mol Vis 2008; 14: 1760–1769.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hellstrom M, Ruitenberg MJ, Pollett MA, Ehlert EM, Twisk J, Verhaagen J et al. Cellular tropism and transduction properties of seven adeno-associated viral vector serotypes in adult retina after intravitreal injection. Gene Therapy 2009; 16: 521–532.

    Article  CAS  PubMed  Google Scholar 

  75. Summerford C, Samulski RJ . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998; 72: 1438–1445.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Halbert CL, Allen JM, Miller AD . Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol 2001; 75: 6615–6624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Aartsen WM, van Cleef KW, Pellissier LP, Hoek RM, Vos RM, Blits B et al. GFAP-driven GFP expression in activated mouse Muller glial cells aligning retinal blood vessels following intravitreal injection of AAV2/6 vectors. PloS One 2010; 5: e12387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN et al. Muller cells in the healthy and diseased retina. Prog Retin Eye Res 2006; 25: 397–424.

    Article  CAS  PubMed  Google Scholar 

  79. Giove TJ, Sena-Esteves M, Eldred WD . Transduction of the inner mouse retina using AAVrh8 and AAVrh10 via intravitreal injection. Exp Eye Res 2010; 91: 652–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Koerber JT, Klimczak R, Jang JH, Dalkara D, Flannery JG, Schaffer DV . Molecular evolution of adeno-associated virus for enhanced glial gene delivery. Mol Ther 2009; 17: 2088–2095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vandenberghe LH, Wilson JM, Gao G . Tailoring the AAV vector capsid for gene therapy. Gene Therapy 2009; 16: 311–319.

    Article  CAS  PubMed  Google Scholar 

  82. Fradot M, Busskamp V, Forster V, Cronin T, Leveillard T, Bennett J et al. Gene therapy in ophthalmology: validation on cultured retinal cells and explants from postmortem human eyes. Hum Gene Ther 2011; 22: 587–593.

    Article  CAS  PubMed  Google Scholar 

  83. Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 2006; 50: 23–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lagali PS, Balya D, Awatramani GB, Munch TA, Kim DS, Busskamp V et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 2008; 11: 667–675.

    Article  CAS  PubMed  Google Scholar 

  85. Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 2010; 329: 413–417.

    Article  CAS  PubMed  Google Scholar 

  86. Work LM, Buning H, Hunt E, Nicklin SA, Denby L, Britton N et al. Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses. Mol Ther 2006; 13: 683–693.

    Article  CAS  PubMed  Google Scholar 

  87. Chen YH, Chang M, Davidson BL . Molecular signatures of disease brain endothelia provide new sites for CNS-directed enzyme therapy. Nat Med 2009; 15: 1215–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Brown BD, Naldini L . Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 2009; 10: 578–585.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Therese Cronin and Dr Robin Ali for the discussion and critical reading of the manuscript. Supported in part by: Grant Number UL1RR024134 (LHV) from the National Center for Research Resources and Institute for Translational Medicine and Therapeutics’ (ITMAT) Transdisciplinary Program in Translational Medicine and Therapeutics; the Foundation Fighting Blindness (LHV and AA), the European Commission under the FP7 AAVEYE project (Grant No HEALTH-2007-B-223445) (AA); the FP7 TREATRUSH project (Grant No 242013) (AA).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L H Vandenberghe or A Auricchio.

Ethics declarations

Competing interests

LHV is co-inventor of AAV technologies including novel serotypes which are described in patents licensed to various pharmaceutical and biotechnological companies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandenberghe, L., Auricchio, A. Novel adeno-associated viral vectors for retinal gene therapy. Gene Ther 19, 162–168 (2012). https://doi.org/10.1038/gt.2011.151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.151

Keywords

This article is cited by

Search

Quick links