Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Influence of chimeric human-bovine fibers on adenoviral uptake by liver cells and the antiviral immune response

Abstract

Human adenoviruses (HAdV) are widely used for in vitro and in vivo gene transfer. Viral hepatotropism, inflammatory responses and neutralization by pre-existing antibodies (NAbs) are obstacles for clinical applications of HAdV vectors. Although the multifactorial events leading to innate HAdV toxicity are far from being elucidated, there is a consensus that the majority of intravenously injected-HAdV vectors is sequestered by Kuppfer cells, probably independently of coagulation factors. In this study, we show that the adenoviral-associated humoral and innate cytokine immune responses are significantly reduced when HAdV-5 vector carrying human bovine chimeric fibers (HAdV-5-F2/BAdV-4) is intravenously injected into mice. Fiber pseudotyping modified its interaction with blood coagulation factors, as FIX and FX no longer mediate the infection of liver cells by HAdV-5-F2/BAdV-4. As a consequence, at early time points post-infection, several cytokines and chemokines (IFN-γ, IL-6, IP-10, MCP-1, RANTES and MP1β) were found to be present at lower levels in the plasma of mice that had been intravenously injected with HAdV-5-F2/BAdV-4 compared with mice injected with the parental vector HAdV-5. Moreover, genetic modification of the fiber allowed HAdV-5-F2/BAdV-4 to partially escape neutralization by NAbs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bangari DS, Mittal SK . Current strategies and future directions for eluding adenoviral vector immunity. Curr Gene Ther 2006; 6: 215–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schnell MA, Zhang Y, Tazelaar J, Gao GP, Yu QC, Qian R et al. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther 2001; 3: 708–722.

    Article  CAS  PubMed  Google Scholar 

  3. Morral N, O’Neal WK, Rice K, Leland MM, Piedra PA, Aguilar-Cordova E et al. Lethal toxicity, severe endothelial injury, and a threshold effect with high doses of an adenoviral vector in baboons. Hum Gene Ther 2002; 13: 143–154.

    Article  CAS  PubMed  Google Scholar 

  4. Raper SE, Yudkoff M, Chirmule N, Gao GP, Nunes F, Haskal ZJ et al. A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum Gene Ther 2002; 13: 163–175.

    Article  CAS  PubMed  Google Scholar 

  5. Lozier JN, Csako G, Mondoro TH, Krizek DM, Metzger ME, Costello R et al. Toxicity of a first-generation adenoviral vector in rhesus macaques. Hum Gene Ther 2002; 13: 113–124.

    Article  CAS  PubMed  Google Scholar 

  6. Lieber A, He CY, Meuse L, Schowalter D, Kirillova I, Winther B et al. The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol 1997; 71: 8798–8807.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Borgland SL, Bowen GP, Wong NC, Libermann TA, Muruve DA . Adenovirus vector-induced expression of the C-X-C chemokine IP-10 is mediated through capsid-dependent activation of NF-κB. J Virol 2000; 74: 3941–3947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tamanini A, Nicolis E, Bonizzato A, Bezzerri V, Melotti P, Assael BM et al. Interaction of adenovirus type 5 fiber with the coxsackievirus and adenovirus receptor activates inflammatory response in human respiratory cells. J Virol 2006; 80: 11241–11254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Muruve DA . The innate immune response to adenovirus vectors. Hum Gene Ther 2004; 15: 1157–1166.

    Article  CAS  PubMed  Google Scholar 

  10. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  11. Wickham TJ, Filardo EJ, Cheresh DA, Nemerow GR . Integrin alpha v beta 5 selectively promotes adenovirus mediated cell membrane permeabilization. J Cell Biol 1994; 127: 257–264.

    Article  CAS  PubMed  Google Scholar 

  12. Dechecchi MC, Melotti P, Bonizzato A, Santacatterina M, Chilosi M, Cabrini G . Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J Virol 2001; 75: 8772–8780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sullivan DE, Dash S, Du H, Hiramatsu N, Aydin F, Kolls J et al. Liver-directed gene transfer in non-human primates. Hum Gene Ther 1997; 8: 1195–1206.

    Article  CAS  PubMed  Google Scholar 

  14. Smith T, Idamakanti N, Kylefjord H, Rollence M, King L, Kaloss M et al. In vivo hepatic adenoviral gene delivery occurs independently of the coxsackievirus-adenovirus receptor. Mol Ther 2002; 5: 770–779.

    Article  CAS  PubMed  Google Scholar 

  15. Leissner P, Legrand V, Schlesinger Y, Hadji DA, van Raaij M, Cusack S et al. Influence of adenoviral fiber mutations on viral encapsidation, infectivity and in vivo tropism. Gene Therapy 2001; 8: 49–57.

    Article  CAS  PubMed  Google Scholar 

  16. Alemany R, Curiel DT . CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Therapy 2001; 8: 1347–1353.

    Article  CAS  PubMed  Google Scholar 

  17. Parker AL, McVey JH, Doctor JH, Lopez-Franco O, Waddington SN, Havenga MJ et al. Influence of coagulation factor zymogens on the infectivity of adenoviruses pseudotyped with fibers from subgroup D. J Virol 2007; 81: 3627–3631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parker AL, Waddington SN, Nicol CG, Shayakhmetov DM, Buckley SM, Denby L et al. Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood 2006; 108: 2554–2561.

    Article  CAS  PubMed  Google Scholar 

  19. Shayakhmetov DM, Gaggar A, Ni S, Li ZY, Lieber A . Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol 2005; 79: 7478–7491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu Q, Muruve DA . Molecular basis of the inflammatory response to adenovirus vectors. Gene Therapy 2003; 10: 935–940.

    Article  CAS  PubMed  Google Scholar 

  21. Schoggins JW, Nociari M, Philpott N, Falck-Pedersen E . Influence of fiber detargeting on adenovirus-mediated innate and adaptive immune activation. J Virol 2005; 79: 11627–11637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shayakhmetov DM, Li ZY, Ternovoi V, Gaggar A, Gharwan H, Lieber A . The interaction between the fiber knob domain and the cellular attachment receptor determines the intracellular trafficking route of adenoviruses. J Virol 2003; 77: 3712–3723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roelvink PW, Lizonova A, Lee JG, Li Y, Bergelson JM, Finberg RW et al. The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol 1998; 72: 7909–7915.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Roelvink PW, Mi Lee G, Einfeld DA, Kovesdi I, Wickham TJ . Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 1999; 286: 1568–1571.

    Article  CAS  PubMed  Google Scholar 

  25. Rogee S, Grellier E, Bernard C, Loyens A, Beauvillain JC, D’Halluin JC et al. Intracellular trafficking of a fiber-modified adenovirus using lipid raft/caveolae endocytosis. Mol Ther 2007; 15: 1963–1972.

    Article  CAS  PubMed  Google Scholar 

  26. Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 2008; 132: 397–409.

    Article  CAS  PubMed  Google Scholar 

  27. Kalyuzhniy O, Di Paolo NC, Silvestry M, Hofherr SE, Barry MA, Stewart PL et al. Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc Natl Acad Sci USA 2008; 105: 5483–5488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. D’Ambrosio E, Del Grosso N, Chicca A, Midulla M . Neutralizing antibodies against 33 human adenoviruses in normal children in Rome. J Hyg (London) 1982; 89: 155–161.

    Article  Google Scholar 

  29. Renaut L, Colin M, Leite JP, Benko M, D’Halluin JC . Abolition of hCAR-dependent cell tropism using fiber knobs of Atadenovirus serotypes. Virology 2004; 321: 189–204.

    Article  CAS  PubMed  Google Scholar 

  30. Kass-Eisler A, Falck-Pedersen E, Elfenbein DH, Alvira M, Buttrick PM, Leinwand LA . The impact of developmental stage, route of administration and the immune system on adenovirus-mediated gene transfer. Gene Therapy 1994; 1: 395–402.

    CAS  PubMed  Google Scholar 

  31. Fechner H, Haack A, Wang H, Wang X, Eizema K, Pauschinger M et al. Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Therapy 1999; 6: 1520–1535.

    Article  CAS  PubMed  Google Scholar 

  32. Favier AL, Burmeister WP, Chroboczek J . Unique physicochemical properties of human enteric Ad41 responsible for its survival and replication in the gastrointestinal tract. Virology 2004; 322: 93–104.

    Article  CAS  PubMed  Google Scholar 

  33. Wu E, Pache L, Von Seggern DJ, Mullen TM, Mikyas Y, Stewart PL et al. Flexibility of the adenovirus fiber is required for efficient receptor interaction. J Virol 2003; 77: 7225–7235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vigant F, Descamps D, Jullienne B, Esselin S, Connault E, Opolon P et al. Substitution of hexon hypervariable region 5 of adenovirus serotype 5 abrogates blood factor binding and limits gene transfer to liver. Mol Ther 2008; 16: 1474–1480.

    Article  CAS  PubMed  Google Scholar 

  35. Rogee S, Grellier E, Bernard C, Colin M, D’Halluin JC . Non-heparan sulfate GAG-dependent infection of cells using an adenoviral vector with a chimeric fiber conserving its KKTK motif. Virology 2008; 380: 60–68.

    Article  CAS  PubMed  Google Scholar 

  36. Voss B, Glossl J, Cully Z, Kresse H . Immunocytochemical investigation on the distribution of small chondroitin sulfate-dermatan sulfate proteoglycan in the human. J Histochem Cytochem 1986; 34: 1013–1019.

    Article  CAS  PubMed  Google Scholar 

  37. Philpott NJ, Nociari M, Elkon KB, Falck-Pedersen E . Adenovirus-induced maturation of dendritic cells through a PI3 kinase-mediated TNF-alpha induction pathway. Proc Natl Acad Sci USA 2004; 101: 6200–6205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. D’Alessio A, Al-Lamki RS, Bradley JR, Pober JS . Caveolae participate in tumor necrosis factor receptor 1 signaling and internalization in a human endothelial cell line. Am J Pathol 2005; 166: 1273–1282.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vogels R, Zuijdgeest D, van Rijnsoever R, Hartkoorn E, Damen I, de Bethune MP et al. Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. J Virol 2003; 77: 8263–8271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nanda A, Lynch DM, Goudsmit J, Lemckert AA, Ewald BA, Sumida SM et al. Immunogenicity of recombinant fiber-chimeric adenovirus serotype 35 vector-based vaccines in mice and rhesus monkeys. J Virol 2005; 79: 14161–14168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Parker AL, Waddington SN, Buckley SM, Custers J, Havenga MJ, van Rooijen N et al. Effect of neutralizing sera on factor x-mediated adenovirus serotype 5 gene transfer. J Virol 2009; 83: 479–483.

    Article  CAS  PubMed  Google Scholar 

  42. Myhre S, Henning P, Granio O, Tylo AS, Nygren PA, Olofsson S et al. Decreased immune reactivity towards a knobless, affibody-targeted adenovirus type 5 vector. Gene Therapy 2007; 14: 376–381.

    Article  CAS  PubMed  Google Scholar 

  43. Renaut L, Bernard C, D’Halluin JC . A rapid and easy method for production and selection of recombinant adenovirus genomes. J Virol Methods 2002; 100: 121–131.

    Article  CAS  PubMed  Google Scholar 

  44. Colin M, Renaut L, Mailly L, D’Halluin JC . Factors involved in the sensitivity of different hematopoietic cell lines to infection by subgroup C adenovirus: implication for gene therapy of human lymphocytic malignancies. Virology 2004; 320: 23–39.

    Article  CAS  PubMed  Google Scholar 

  45. Boulanger PA, Puvion F . Large-scale preparation of soluble adenovirus hexon, penton and fiber antigens in highly purified form. Eur J Biochem 1973; 39: 37–42.

    Article  CAS  PubMed  Google Scholar 

  46. Molinier-Frenkel V, Lengagne R, Gaden F, Hong SS, Choppin J, Gahery-Segard H et al. Adenovirus hexon protein is a potent adjuvant for activation of a cellular immune response. J Virol 2002; 76: 127–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Molinier-Frenkel V, Prevost-Blondel A, Hong SS, Lengagne R, Boudaly S, Magnusson MK et al. The maturation of murine dendritic cells induced by human adenovirus is mediated by the fiber knob domain. J Biol Chem 2003; 278: 37175–37182.

    Article  CAS  PubMed  Google Scholar 

  48. Franqueville L, Henning P, Magnusson M, Vigne E, Schoehn G, Blair-Zajdel ME et al. Protein crystals in adenovirus type 5-infected cells: requirements for intranuclear crystallogenesis, structural and functional analysis. PLoS ONE 2008; 3: e2894.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mailly L, Renaut L, Rogee S, Grellier E, D’Halluin JC, Colin M . Improved gene delivery to B lymphocytes using a modified adenovirus vector targeting CD21. Mol Ther 2006; 14: 293–304.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institut National de la Santé et de la Recherche Médicale, Institut de Recherches sur le Cancer de Lille, Ligue Nationale contre le Cancer, Comité du Nord (J.C. D’Halluin, M. Colin) and Comité de l’Aisne (J.C. D’Halluin), the Région Nord-Pas de Calais, the Lille University Hospital (CHR; S. Rogée, E. Grellier), and the French Foundation against Cystic Fibrosis ‘Vaincre la Mucoviscidose’ (VLM; S.S. Hong, P. Boulanger). We are grateful to B. Hennache, at the Biochemistry Units of CHR of Lille, for performing the ALT assays and to A Bauters, at the Hematology transfusion units of the CHR of Lille for performing the CTs assays. We extend our thanks to IMPRT-114 for the platform facilities (cell sorting, confocal and electron microscopy and molecular interaction analyses), and many thanks to Pierre-Marie Danzé and Anne-Sophie Drucker for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Colin.

Ethics declarations

Competing interests

The authors declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogée, S., Grellier, E., Bernard, C. et al. Influence of chimeric human-bovine fibers on adenoviral uptake by liver cells and the antiviral immune response. Gene Ther 17, 880–891 (2010). https://doi.org/10.1038/gt.2010.37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.37

Keywords

This article is cited by

Search

Quick links