Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Readministration of helper-dependent adenoviral vectors to mouse airway mediated via transient immunosuppression

Abstract

The efficacy of adenovirus-mediated gene therapy is attenuated by the host immune responses to both vector and transgene products. Even for helper-dependent adenoviral (HD-Ad) vectors, which have all viral-coding sequences deleted, the viral capsid proteins still cause immune reactions. In order to improve the efficiency in transgene expression during HD-Ad vector readministration, we administered cyclophosphamide to transiently modulate the mouse immune system. We delivered a high dose (5 × 1010 vector particles (vp) per mouse) of empty HD-Ad to the mouse airway to induce an initial immune response. After 4 weeks, the mice were readministered with an HD-Ad vector containing either the reporter gene, LacZ, or the gene for the human cystic fibrosis transmembrane conductance regulator (CFTR) (1.5 × 1010 vp per mouse). We found that the expression of both transgenes was greatly improved by the administration of cyclophosphamide when compared with the expression in mice without the immunosuppressing drug. We also found that the high dose of the empty HD-Ad vector administered intranasally does not induce an acute systemic immune response, but it does elicit an acute local response of proinflammatory cytokine production. Antibodies against Ad vector, including the neutralizing antibodies, were greatly reduced by the presence of cyclophosphamide in vector readministratiton. Moreover, cyclophosphamide reduced the infiltration of inflammatory cells, including total leukocytes, lymphocytes, CD4+ and CD8+T cells. These results indicate that transient administration of immunosuppressive agent can be used to extend transgene expression as well as attenuating immunogenicity to HD-Ad vectors in airway readministration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 2008; 358: 2231–2239.

    Article  CAS  Google Scholar 

  2. Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 2008; 358: 2240–2248.

    Article  CAS  PubMed Central  Google Scholar 

  3. Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA 2008; 105: 15112–15117.

    Article  CAS  PubMed Central  Google Scholar 

  4. Cideciyan AV, Hauswirth WW, Aleman TS, Kaushal S, Schwartz SB, Boye SL et al. Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther 2009; 20: 999–1004.

    Article  CAS  PubMed Central  Google Scholar 

  5. Wilson JM, Gansbacher B, Berns KI, Bosch F, Kay MA, Naldini L et al. Good news on the clinical gene transfer front. Hum Gene Ther 2008; 19: 429–430.

    Article  CAS  PubMed Central  Google Scholar 

  6. Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 2009; 360: 447–458.

    Article  CAS  PubMed Central  Google Scholar 

  7. Flotte TR, Ng P, Dylla DE, McCray Jr PB, Wang G, Kolls JK et al. Viral vector-mediated and cell-based therapies for treatment of cystic fibrosis. Mol Ther 2007; 15: 229–241.

    Article  CAS  PubMed Central  Google Scholar 

  8. Pearson H . Human genetics: one gene, twenty years. Nature 2009; 460: 164–169.

    Article  CAS  PubMed Central  Google Scholar 

  9. Ferrari S, Griesenbach U, Geddes DM, Alton E . Immunological hurdles to lung gene therapy. Clin Exp Immunol 2003; 132: 1–8.

    Article  CAS  PubMed Central  Google Scholar 

  10. Wu TL, Ertl HC . Immune barriers to successful gene therapy. Trends Mol Med 2009; 15: 32–39.

    Article  CAS  PubMed Central  Google Scholar 

  11. Chirmule N, Tazelaar J, Wilson JM . Th2-dependent B cell responses in the absence of CD40-CD40 ligand interactions. J Immunol 2000; 164: 248–255.

    Article  CAS  PubMed Central  Google Scholar 

  12. Jooss K, Yang Y, Wilson JM . Cyclophosphamide diminishes inflammation and prolongs transgene expression following delivery of adenoviral vectors to mouse liver and lung. Hum Gene Ther 1996; 7: 1555–1566.

    Article  CAS  PubMed Central  Google Scholar 

  13. Scaria A, St George JA, Gregory RJ, Noelle RJ, Wadsworth SC, Smith AE et al. Antibody to CD40 ligand inhibits both humoral and cellular immune responses to adenoviral vectors and facilitates repeated administration to mouse airway. Gene Ther 1997; 4: 611–617.

    Article  CAS  PubMed Central  Google Scholar 

  14. Zsengeller ZK, Boivin GP, Sawchuk SS, Trapnell BC, Whitsett JA, Hirsch R . Anti-T cell receptor antibody prolongs transgene expression and reduces lung inflammation after adenovirus-mediated gene transfer. Hum Gene Ther 1997; 8: 935–941.

    Article  CAS  Google Scholar 

  15. Ye X, Robinson MB, Pabin C, Batshaw ML, Wilson JM . Transient depletion of CD4 lymphocyte improves efficacy of repeated administration of recombinant adenovirus in the ornithine transcarbamylase deficient sparse fur mouse. Gene Ther 2000; 7: 1761–1767.

    Article  CAS  Google Scholar 

  16. Chirmule N, Raper SE, Burkly L, Thomas D, Tazelaar J, Hughes JV et al. Readministration of adenovirus vector in nonhuman primate lungs by blockade of CD40-CD40 ligand interactions. J Virol 2000; 74: 3345–3352.

    Article  CAS  PubMed Central  Google Scholar 

  17. Seregin SS, Appledorn DM, McBride AJ, Schuldt NJ, Aldhamen YA, Voss T et al. Transient pretreatment with glucocorticoid ablates innate toxicity of systemically delivered adenoviral vectors without reducing efficacy. Mol Ther 2009; 17: 685–696.

    Article  CAS  PubMed Central  Google Scholar 

  18. Koehler DR, Martin B, Corey M, Palmer D, Ng P, Tanswell AK et al. Readministration of helper-dependent adenovirus to mouse lung. Gene Ther 2006; 13: 773–780.

    Article  CAS  Google Scholar 

  19. Croyle MA, Chirmule N, Zhang Y, Wilson JM . ‘Stealth’ adenoviruses blunt cell-mediated and humoral immune responses against the virus and allow for significant gene expression upon readministration in the lung. J Virol 2001; 75: 4792–4801.

    Article  CAS  PubMed Central  Google Scholar 

  20. Eto Y, Yoshioka Y, Mukai Y, Okada N, Nakagawa S . Development of PEGylated adenovirus vector with targeting ligand. Int J Pharm 2008; 354: 3–8.

    Article  CAS  Google Scholar 

  21. O’Neal WK, Zhou H, Morral N, Langston C, Parks RJ, Graham FL et al. Toxicity associated with repeated administration of first-generation adenovirus vectors does not occur with a helper-dependent vector. Mol Med 2000; 6: 179–195.

    Article  PubMed Central  Google Scholar 

  22. Mian A, Guenther M, Finegold M, Ng P, Rodgers J, Lee B . Toxicity and adaptive immune response to intracellular transgenes delivered by helper-dependent vs first generation adenoviral vectors. Mol Genet Metab 2005; 84: 278–288.

    Article  CAS  PubMed Central  Google Scholar 

  23. Kim IH, Jozkowicz A, Piedra PA, Oka K, Chan L . Lifetime correction of genetic deficiency in mice with a single injection of helper-dependent adenoviral vector. Proc Natl Acad Sci USA 2001; 98: 13282–13287.

    Article  CAS  PubMed Central  Google Scholar 

  24. Oka K, Pastore L, Kim IH, Merched A, Nomura S, Lee HJ et al. Long-term stable correction of low-density lipoprotein receptor-deficient mice with a helper-dependent adenoviral vector expressing the very low-density lipoprotein receptor. Circulation 2001; 103: 1274–1281.

    Article  CAS  PubMed Central  Google Scholar 

  25. Croyle MA, Le HT, Linse KD, Cerullo V, Toietta G, Beaudet A et al. PEGylated helper-dependent adenoviral vectors: highly efficient vectors with an enhanced safety profile. Gene Ther 2005; 12: 579–587.

    Article  CAS  PubMed Central  Google Scholar 

  26. Iwai T, Tomita Y, Shimizu I, Zhang Q, Okano S, Minagawa R et al. Different role of cyclophosphamide-induced tolerance in heart and skin allograft tolerance. Transplant Proc 2001; 33: 173–175.

    Article  CAS  PubMed Central  Google Scholar 

  27. Okano S, Eto M, Tomita Y, Yoshizumi T, Yamada H, Minagawa R et al. Cyclophosphamide-induced tolerance in rat orthotopic liver transplantation. Transplantation 2001; 71: 447–456.

    Article  CAS  PubMed Central  Google Scholar 

  28. Takeda A, Uchida K, Haba T, Tominaga Y, Katayama A, Kobayashi T et al. Acute humoral rejection of kidney allografts in patients with a positive flow cytometry crossmatch (FCXM). Clin Transplant 2000; 14 (Suppl 3): 15–20.

    Article  PubMed Central  Google Scholar 

  29. Dai Y, Schwarz EM, Gu D, Zhang WW, Sarvetnick N, Verma IM . Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci USA 1995; 92: 1401–1405.

    Article  CAS  PubMed Central  Google Scholar 

  30. Otake K, Ennist DL, Harrod K, Trapnell BC . Nonspecific inflammation inhibits adenovirus-mediated pulmonary gene transfer and expression independent of specific acquired immune responses. Hum Gene Ther 1998; 9: 2207–2222.

    Article  CAS  PubMed Central  Google Scholar 

  31. Muruve DA, Cotter MJ, Zaiss AK, White LR, Liu Q, Chan T et al. Helper-dependent adenovirus vectors elicit intact innate but attenuated adaptive host immune responses in vivo. J Virol 2004; 78: 5966–5972.

    Article  CAS  PubMed Central  Google Scholar 

  32. Butti E, Bergami A, Recchia A, Brambilla E, Franciotta D, Cattalini A et al. Absence of an intrathecal immune reaction to a helper-dependent adenoviral vector delivered into the cerebrospinal fluid of non-human primates. Gene Ther 2008; 15: 233–238.

    Article  CAS  PubMed Central  Google Scholar 

  33. Xiong W, Goverdhana S, Sciascia SA, Candolfi M, Zirger JM, Barcia C et al. Regulatable gutless adenovirus vectors sustain inducible transgene expression in the brain in the presence of an immune response against adenoviruses. J Virol 2006; 80: 27–37.

    Article  CAS  PubMed Central  Google Scholar 

  34. Brunetti-Pierri N, Ng P . Progress and prospects: gene therapy for genetic diseases with helper-dependent adenoviral vectors. Gene Ther 2008; 15: 553–560.

    Article  CAS  PubMed Central  Google Scholar 

  35. Seiler MP, Cerullo V, Lee B . Immune response to helper dependent adenoviral mediated liver gene therapy: challenges and prospects. Curr Gene Ther 2007; 7: 297–305.

    Article  CAS  PubMed Central  Google Scholar 

  36. Lowenstein PR, Mandel RJ, Xiong WD, Kroeger K, Castro MG . Immune responses to adenovirus and adeno-associated vectors used for gene therapy of brain diseases: the role of immunological synapses in understanding the cell biology of neuroimmune interactions. Curr Gene Ther 2007; 7: 347–360.

    Article  CAS  PubMed Central  Google Scholar 

  37. Muruve DA, Barnes MJ, Stillman IE, Libermann TA . Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. Hum Gene Ther 1999; 10: 965–976.

    Article  CAS  Google Scholar 

  38. Price AR, Limberis MP, Wilson JM, Diamond SL . Pulmonary delivery of adenovirus vector formulated with dexamethasone-spermine facilitates homologous vector re-administration. Gene Ther 2007; 14: 1594–1604.

    Article  CAS  PubMed Central  Google Scholar 

  39. Brunetti-Pierri N, Palmer DJ, Beaudet AL, Carey KD, Finegold M, Ng P . Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum Gene Ther 2004; 15: 35–46.

    Article  CAS  PubMed Central  Google Scholar 

  40. Zsengeller Z, Otake K, Hossain SA, Berclaz PY, Trapnell BC . Internalization of adenovirus by alveolar macrophages initiates early proinflammatory signaling during acute respiratory tract infection. J Virol 2000; 74: 9655–9667.

    Article  CAS  PubMed Central  Google Scholar 

  41. Franchimont D, Galon J, Gadina M, Visconti R, Zhou Y, Aringer M et al. Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes. J Immunol 2000; 164: 1768–1774.

    Article  CAS  PubMed Central  Google Scholar 

  42. Moore DJ, Markmann JF, Deng S . Avenues for immunomodulation and graft protection by gene therapy in transplantation. Transpl Int 2006; 19: 435–445.

    Article  CAS  PubMed Central  Google Scholar 

  43. Bouvet M, Fang B, Ekmekcioglu S, Ji L, Bucana CD, Hamada K et al. Suppression of the immune response to an adenovirus vector and enhancement of intratumoral transgene expression by low-dose etoposide. Gene Ther 1998; 5: 189–195.

    Article  CAS  PubMed Central  Google Scholar 

  44. Koehler DR, Sajjan U, Chow YH, Martin B, Kent G, Tanswell AK et al. Protection of Cftr knockout mice from acute lung infection by a helper-dependent adenoviral vector expressing Cftr in airway epithelia. Proc Natl Acad Sci USA 2003; 100: 15364–15369.

    Article  CAS  PubMed Central  Google Scholar 

  45. Toietta G, Koehler DR, Finegold MJ, Lee B, Hu J, Beaudet AL . Reduced inflammation and improved airway expression using helper-dependent adenoviral vectors with a K18 promoter. Mol Ther 2003; 7: 649–658.

    Article  CAS  PubMed Central  Google Scholar 

  46. Wu J, Duan R, Cao H, Field D, Newnham C, Koehler DR et al. Regulation of epithelium-specific Ets-like transcription factors ESE-1 and ESE-3 in airway epithelial cells. Cell Res 2008; 18: 649–663.

    Article  CAS  PubMed Central  Google Scholar 

  47. Collins DP, Luebering BJ, Shaut DM . T-lymphocyte functionality assessed by analysis of cytokine receptor expression, intracellular cytokine expression, and femtomolar detection of cytokine secretion by quantitative flow cytometry. Cytometry 1998; 33: 249–255.

    Article  CAS  PubMed Central  Google Scholar 

  48. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Deborah J Field for reading the paper. This work was partially supported by Operating Grants from the Canadian Cystic Fibrosis Foundation to JH and AC and from the Canadian Institutes of Health Research and the Foundation Fighting Blindness-Canada to JH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Hu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, H., Yang, T., Li, XF. et al. Readministration of helper-dependent adenoviral vectors to mouse airway mediated via transient immunosuppression. Gene Ther 18, 173–181 (2011). https://doi.org/10.1038/gt.2010.125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.125

Keywords

This article is cited by

Search

Quick links