Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic variants of SLC11A1 are associated with both autoimmune and infectious diseases: systematic review and meta-analysis

Abstract

A systematic review and meta-analyses were undertaken to investigate the association of SLC11A1 genetic variants with disease occurrence. Literature searching indentified 109 publications to include in the meta-analyses assessing the association of 11 SLC11A1 variants with autoimmune and infectious disease. The (GT)n promoter alleles 2 and 3 (rs534448891), which alter SLC11A1 expression, were significantly associated with tuberculosis (OR=1.47 (1.30–1.66), OR=0.76 (0.65–0.89), respectively) and infectious disease (OR=1.25 (1.10–1.42), OR=0.83 (0.74–0.93), respectively). However, although no association was observed with autoimmune disease, a modest significant association was observed with type 1 diabetes (allele 2 OR=0.94 (0.89–0.98)). On the basis of a stronger association of (GT)n allele 2 with tuberculosis, compared with the protective effect of allele 3, we hypothesise that allele 2 is likely the disease-causing variant influencing disease susceptibility. Significant associations were observed between the 469+14G/C polymorphism (rs3731865) and autoimmune disease (OR=1.30 (1.04–1.64)) and rheumatoid arthritis (OR=1.60 (1.20–2.13)) and between the −237C/T polymorphism (rs7573065) and inflammatory bowel disease (OR=0.60 (0.43–0.84)). Further, significant associations were identified between the 469+14G/C, 1730G/A and 1729+55del4 polymorphisms (rs3731865, rs17235409 and rs17235416, respectively) and both infectious disease per se and tuberculosis. These findings show a clear association between variants in the SLC11A1 locus and autoimmune and infectious disease susceptibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Vidal S, Tremblay ML, Govoni G, Gauthier S, Sebastiani G, Malo D et al. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med 1995; 182: 655–666.

    Article  CAS  Google Scholar 

  2. Soe-Lin S, Apte SS, Andriopoulos BJ, Andrews MC, Schranzhofer M, Kahawita T et al. Nramp1 promotes efficient macrophage recycling of iron following erythrophagocytosis in vivo. Proc Natl Acad Sci USA 2009; 106: 5960–5965.

    Article  CAS  Google Scholar 

  3. Soe-Lin S, Apte SS, Mikhael MR, Kayembe LK, Nie G, Ponka P . Both Nramp1 and DMT1 are necessary for efficient macrophage iron recycling. Exp Hematol 2010; 38: 609–617.

    Article  Google Scholar 

  4. Soe-Lin S, Sheftel AD, Wasyluk B, Ponka P . Nramp1 equips macrophages for efficient iron recycling. Exp Hematol 2008; 36: 929–937.

    Article  CAS  Google Scholar 

  5. Govoni G, Vidal S, Gauthier S, Skamene E, Malo D, Gros P . The Bcg/Ity/Lsh locus: genetic transfer of resistance to infections in C57BL/6J mice transgenic for the Nramp1 Gly169 allele. Infect Immun 1996; 64: 2923–2929.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Forbes JR, Gros P . Iron, manganese, and cobalt transport by Nramp1 (Slc11a1) and Nramp2 (Slc11a2) expressed at the plasma membrane. Blood 2003; 102: 1884–1892.

    Article  CAS  Google Scholar 

  7. Goswami T, Bhattacharjee A, Babal P, Searle S, Moore E, Li M et al. Natural-resistance-associated macrophage protein 1 is an H+/bivalent cation antiporter. Biochem J 2001; 354: 511–519.

    Article  CAS  Google Scholar 

  8. Forbes JR, Gros P . Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol 2001; 9: 397–403.

    Article  CAS  Google Scholar 

  9. Frehel C, Canonne-Hergaux F, Gros P, de Chastellier C . Effect of Nramp1 on bacterial replication and on maturation of Mycobacterium avium-containing phagosomes in bone marrow-derived mouse macrophages. Cell Microbiol 2002; 4: 541–556.

    Article  CAS  Google Scholar 

  10. Jabado N, Jankowski A, Dougaparsad S, Picard V, Grinstein S, Gros P . Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (NRAMP1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J Exp Med 2000; 192: 1237–1248.

    Article  CAS  Google Scholar 

  11. Stober CB, Brode S, White JK, Popoff JF, Blackwell JM . Slc11a1, formerly Nramp1, is expressed in dendritic cells and influences major histocompatibility complex class II expression and antigen-presenting cell function. Infect Immun 2007; 75: 5059–5067.

    Article  CAS  Google Scholar 

  12. Blackwell JM . Structure and function of the natural-resistance-associated macrophage protein (Nramp1), a candidate protein for infectious and autoimmune disease susceptibility. Mol Med Today 1996; 2: 205–211.

    Article  CAS  Google Scholar 

  13. Karupiah G, Hunt NH, King NJ, Chaudhri G . NADPH oxidase, Nramp1 and nitric oxide synthase 2 in the host antimicrobial response. Rev Immunogenet 2000; 2: 387–415.

    CAS  PubMed  Google Scholar 

  14. Zwilling BS, Vespa L, Massie M . Regulation of I-A expression by murine peritoneal macrophages: differences linked to the Bcg gene. J Immunol 1987; 138: 1372–1376.

    CAS  PubMed  Google Scholar 

  15. Soo SS, Villarreal-Ramos B, Khan CMA, Hormaeche CE, Blackwell JM . Genetic control of immune response to recombinant antigens carried by an attenuated salmonella typhimurium vaccine strain: Nramp1 influences T-helper subset responses and protection against leishmanial challenge. Infect Immun 1998; 66: 1910–1917.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kissler S, Stern P, Takahashi K, Hunter K, Peterson LB, Wicker LS . In vivo RNA interference demonstrates a role for Nramp1 in modifying susceptibility to type 1 diabetes. Nat Genet 2006; 38: 479–483.

    Article  CAS  Google Scholar 

  17. Malo D, Vogan K, Vidal S, Hu J, Cellier M, Schurr E et al. Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites. Genomics 1994; 23: 51–61.

    Article  CAS  Google Scholar 

  18. Jiang HR, Gilchrist DS, Popoff J-F, Jamieson SE, Truscott M, White JK et al. Influence of Slc11a1 (formerly Nramp1 on DSS-induced colitis in mice. J Leukoc Biol 2009; 85: 703–710.

    Article  CAS  Google Scholar 

  19. Searle S, Blackwell JM . Evidence for a functional repeat polymorphism in the promoter of the human NRAMP1 gene that correlates with autoimmune versus infectious disease susceptibility. J Med Genet 1999; 36: 295–299.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zaahl MG, Robson KJH, Warnich L, Kotze MJ . Expression of the SLC11A1 (NRAMP1 5 '-(GT)(n) repeat: opposite effect in the presence of-237C→T. Blood Cells Mol Dis 2004; 33: 45–50.

    Article  CAS  Google Scholar 

  21. Decobert M, Larue H, Bergeron A, Harel F, Pfister C, Rousseau F et al. Polymorphisms of the human NRAMP1 gene are associated with response to bacillus Calmette-Guerin immunotherapy for superficial bladder cancer. J Urol 2006; 175: 1506–1511.

    Article  CAS  Google Scholar 

  22. Li HT, Zhang TT, Huang QH, Lv B, Huang J . Meta-analysis on NRAMP1 gene polymorphisms and tuberculosis susceptibility in East-Asia population. Zhonghua Liu Xing Bing Xue Za Zhi 2006; 27: 428–432.

    CAS  PubMed  Google Scholar 

  23. Li HT, Zhang TT, Zhou YQ, Huang QH, Huang J . SLC11A1 (formerly NRAMP1) gene polymorphisms and tuberculosis susceptibility: a meta-analysis. Int J Tuberc Lung Dis 2006; 10: 3–12.

    CAS  PubMed  Google Scholar 

  24. Li X, Yang Y, Zhou F, Zhang Y, Lu H, Jin Q et al. SLC11A1 (NRAMP1) polymorphisms and tuberculosis susceptibility: updated systematic review and meta-analysis. PLoS ONE 2011; 6: e15831.

    Article  CAS  Google Scholar 

  25. Zhao ZZ, Zhang TZ, Gao YM . Meta-analysis on the association of the association between the polymorphisms of the NRAMP1 genes and tuberculosis susceptibility. Modern Preventive Medicine 2010; 37: 2801–2818.

    CAS  Google Scholar 

  26. Meilang Q, Zhang Y, Zhang J, Zhao Y, Tian C, Huang J et al. Polymorphisms in the SLC11A1 gene and tuberculosis risk: a meta-analysis update. Int J Tuberc Lung Dis 2012; 16: 437–446.

    Article  CAS  Google Scholar 

  27. Nishino M, Ikegami H, Fujisawa T, Kawaguchi Y, Kawabata Y, Shintani M et al. Functional polymorphism in Z-DNA–forming motif of promoter of SLC11A1 gene and type 1 diabetes in Japanese subjects: association study and meta-analysis. Metabolism 2005; 54: 628–633.

    Article  CAS  Google Scholar 

  28. O'Brien BA, Archer NS, Simpson AM, Torpy FR, Nassif NT . Association of SLC11A1 promoter polymorphisms with the incidence of autoimmune and inflammatory diseases: a meta-analysis. J Autoimmun 2008; 31: 42–51.

    Article  CAS  Google Scholar 

  29. Yang JH, Downes K, Howson JM, Nutland S, Stevens HE, Walker NM et al. Evidence of association with type 1 diabetes in the SLC11A1 gene region. BMC Med Genet 2011; 12: 59.

    Article  CAS  Google Scholar 

  30. Bellamy R, Ruwende C, Corrah T, McAdam K, Whittle HC, Hill AVS . Variations in the Nramp1 gene and susceptibility to tuberculosis in West Africans. N Engl J Med 1998; 338: 640–644.

    Article  CAS  Google Scholar 

  31. Soborg C, Andersen AB, Madsen HO, Kok-Jensen A, Skinhoj P, Garred P . Natural resistance-associated macrophage protein 1 polymorphisms are associated with microscopy-positive tuberculosis. J Infect Dis 2002; 186: 517–521.

    Article  CAS  Google Scholar 

  32. Fitness J, Floyd S, Warndorff DK, Sichali L, Malema S, Crampin AC et al. Large-scale candidate gene study of tuberculosis susceptibility in the Karonga district of northern Malawi. Am J Trop Med Hyg 2004; 71: 341–349.

    Article  CAS  Google Scholar 

  33. Fitness J, Floyd S, Warndorff DK, Sichali L, Malema S, Crampin AC et al. Large-scale candidate gene study of leprosy susceptibility in the Karonga district of northern Malawi. Am J Trop Med Hyg 2004; 71: 330–340.

    Article  CAS  Google Scholar 

  34. Leung KH, Yip SP, Wong WS, Yiu LS, Chan KK, Lai WM et al. Sex- and age-dependent association of SLC11A1 polymorphisms with tuberculosis in Chinese: a case control study. BMC Infect Dis 2007; 7: 19.

    Article  Google Scholar 

  35. Soborg C, Andersen AB, Range N, Malenganisho W, Friis H, Magnussen P et al. Influence of candidate susceptibility genes on tuberculosis in a high endemic region. Mol Immunol 2007; 44: 2213–2220.

    Article  CAS  Google Scholar 

  36. Bayele HK, Peyssonnaux C, Giatromanolaki A, Arrais-Silva WW, Mohamed HS, Collins H et al. HIF-1 regulates heritable variation and allele expression phenotypes of the macrophage immune response gene SLC11A1 from a Z-DNA-forming microsatellite. Blood 2007; 110: 3039–3048.

    Article  CAS  Google Scholar 

  37. Xu YZ, Thuraisingam T, Marino R, Radzioch D . Recruitment of SWI/SNF complex is required for transcriptional activation of SLC11A1 gene during macrophage differentiation of HL-60 cells. J Biol Chem 2011; 286: 12839–12849.

    Article  CAS  Google Scholar 

  38. Taka S, Gazouli M, Politis P, Pappa K, Anagnou N . Transcription factor ATF-3 regulates allele variation phenotypes of the human SLC11A1 gene. Mol Biol Rep 2013; 40: 2263–2271.

    Article  CAS  Google Scholar 

  39. Awomoyi AA, Marchant A, Howson JM, McAdam KP, Blackwell JM, Newport MJ . Interleukin-10, polymorphism in SLC11A1 (formerly NRAMP1), and susceptibility to tuberculosis. J Infect Dis 2002; 186: 1808.

    Article  CAS  Google Scholar 

  40. Fritsche G, Nairz M, Werner ER, Barton HC, Weiss G . Nramp1-functionality increases iNOS expression via repression of IL-10 formation. Eur J Immunol 2008; 38: 3060–3067.

    Article  CAS  Google Scholar 

  41. Pie S, Matsiota-Bernard P, Truffa-Bachi P, Nauciel N . Gamma interferon and interleukin-10 gene expression in innately susceptible and resistant mice during the early phase of Salmonella typhimurium infection. Infect Immun 1996; 64: 849–854.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Rojas M, Olivier M, Gros P, Barrera LF, Garcia LF . TNF-α and IL-10 modulate the induction of apoptosis by virulent Mycobacterium tuberculosis in murine macrophages. J Immunol 1999; 162: 6122–6131.

    CAS  PubMed  Google Scholar 

  43. Smit JJ, van Loveren H, Hoekstra MO, Nijkamp FP, Bloksma N . Influence of the macrophage bacterial resistance gene Nramp1 (Slc11a1) on the induction of allergic asthma in the mouse. FASEB J 2003; 17: 958–960.

    Article  CAS  Google Scholar 

  44. Yip SP, Leung KH, Lin CK . Extent and distribution of linkage disequilibrium around the SLC11A1 locus. Genes Immun 2003; 4: 212–221.

    Article  CAS  Google Scholar 

  45. Smith JM, Haigh J . The hitch-hiking effect of a favourable gene. Genet Res 1974; 23: 23–35.

    Article  CAS  Google Scholar 

  46. Dunstan SJ, Ho VA, Duc CM, Lanh MN, Phuong CX, Luxemburger C et al. Typhoid fever and genetic polymorphisms at the natural resistance associated macrophage protein 1. J Infect Dis 2001; 183: 1156–1160.

    Article  CAS  Google Scholar 

  47. Kim E, Kim K, Park S, Kim J, Lee W, Cha S et al. SLC11A1 polymorphisms are associated with the risk of chronic obstructive pulmonary disease in a Korean population. Biochem Genet 2008; 46: 506–519.

    Article  CAS  Google Scholar 

  48. Mehrotra S, Oommen J, Mishra A, Sudharshan M, Tiwary P, Jamieson S et al. No evidence for association between SLC11A1 and visceral leishmaniasis in India. BMC Med Genet 2011; 12: 71.

    Article  CAS  Google Scholar 

  49. Gazouli M, Atsaves V, Mantzaris G, Economou M, Nasioulas G, Evangelou K et al. Role of functional polymorphisms of NRAMP1 gene for the development of Crohn's disease. Inflamm Bowel Dis 2008; 14: 1323–1330.

    Article  Google Scholar 

  50. Cellier M, Govoni G, Vidal S, Kwan T, Groulx N, Liu J et al. Human natural resistance-associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization, and tissue-specific expression. J Exp Med 1994; 180: 1741–1752.

    Article  CAS  Google Scholar 

  51. Runstadler JA, Säilä H, Savolainen A, Leirisalo-Repo M, Aho K, Tuomilehto-Wolf E et al. Association of SLC11A1 (NRAMP1) with persistent oligoarticular and polyarticular rheumatoid factor-negative juvenile idiopathic arthritis in Finnish patients: haplotype analysis in Finnish families. Arthritis Rheum 2005; 52: 247–256.

    Article  CAS  Google Scholar 

  52. Yen JH, Lin CH, Tsai WC, Ou TT, Wu CC, Hu CJ et al. Natural resistance-associated macrophage protein 1 gene polymorphisms in rheumatoid arthritis. Immunol Lett 2006; 102: 91–97.

    Article  CAS  Google Scholar 

  53. Kim JH, Lee SY, Lee SH, Sin C, Shim JJ, In KH et al. NRAMP1 genetic polymorphisms as a risk factor of tuberculous pleurisy. Int J Tuberc Lung Dis 2003; 7: 370–375.

    CAS  PubMed  Google Scholar 

  54. Qu Y, Tang Y, Cao D, Wu F, Liu J, Lu G et al. Genetic polymorphisms in alveolar macrophage response-related genes, and risk of silicosis and pulmonary tuberculosis in Chinese iron miners. Int J Hyg Environ Health 2007; 210: 679–689.

    Article  CAS  Google Scholar 

  55. Merza M, Farnia P, Anoosheh S, Varahram M, Kazampour M, Pajand O et al. The NRAMP1, VDR and TNF-alpha gene polymorphisms in Iranian tuberculosis patients: the study on host susceptibility. Braz J Infect Dis 2009; 13: 252–256.

    Article  CAS  Google Scholar 

  56. Lumley T . Rmeta version 2.14, R package 2009, Available from http://cran.r-project.org.

  57. R Development Core Team. R: a language and environment for statistical computing 2008, Available from http://www.R-project.org.

  58. Sweeting JM, Sutton JA, Lambert CP . What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med 2004; 23: 1351–1375.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jenefer M Blackwell, Anna Dubaniewicz, AM Graham, Leonardo A Sechi, Lee E Sieswerda, Maria Gazouli, Margje Haverkamp, Linda Wicker, Jennie Yang, Eileen Hoal, Timothy Sterling and Alison Motsinger-Reif for supplying the additional population data. NSA was funded through an Australian Postgraduate Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B A O'Brien.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Archer, N., Nassif, N. & O'Brien, B. Genetic variants of SLC11A1 are associated with both autoimmune and infectious diseases: systematic review and meta-analysis. Genes Immun 16, 275–283 (2015). https://doi.org/10.1038/gene.2015.8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2015.8

This article is cited by

Search

Quick links