Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Efficient expression of bioactive murine IL12 as a self-processing P2A polypeptide driven by inflammation-regulated promoters in tumor cell lines

Abstract

Interleukin 12 (IL12) is a heterodimeric proinflammatory cytokine that has shown promise as an anticancer agent. However, despite encouraging results in animal models, clinical trials involving IL12 have been unsuccessful due to toxic side effects associated with its systemic administration, prompting investigation into new delivery methods to confine IL12 expression to the tumor environment. In this study we used the self-cleaving property of the 2A peptide to express both codon-optimized murine IL12 subunits (muIL12opt) as a self-processing polypeptide (muIL12opt-P2A). We cloned muIL12opt-P2A driven by different inflammation-induced lentiviral expression systems to transduce murine tumor cell lines commonly employed in syngeneic tumor models. We confirmed the inducibility of these systems in vitro and in vivo and demonstrated the successful expression of both IL12 subunits and the release of bioactive IL12 upon proinflammatory stimulation in vitro. Therefore, IL12 release driven by these inflammation-regulated expression systems might be useful not only to address the impact of IL12 expression in the tumor environment but also to achieve a local IL12 release controlled by the inflammation state of the tumor, thus avoiding toxic side effects associated with systemic administration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ostrand-Rosenberg S . Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev 2008; 18: 11–18.

    Article  CAS  Google Scholar 

  2. Malmberg KJ, Ljunggren HG . Escape from immune- and nonimmune-mediated tumor surveillance. Semin Cancer Biol 2006; 16: 16–31.

    Article  CAS  Google Scholar 

  3. Chen DS, Mellman I . Oncology meets immunology: the cancer-immunity cycle. Immunity 2013; 39: 1–10.

    Article  Google Scholar 

  4. Vignali DA, Kuchroo VK . IL-12 family cytokines: immunological playmakers. Nat Immunol 2012; 13: 722–728.

    Article  CAS  Google Scholar 

  5. Tahara H, Lotze MT . Antitumor effects of interleukin-12 (IL-12): applications for the immunotherapy and gene therapy of cancer. Gene Ther 1995; 2: 96–106.

    CAS  PubMed  Google Scholar 

  6. Sangro B, Melero I, Qian C, Prieto J . Gene therapy of cancer based on interleukin 12. Curr Gene Ther 2005; 5: 573–581.

    Article  CAS  Google Scholar 

  7. Lasek W, Zagozdzon R, Jakobisiak M . Interleukin 12: still a promising candidate for tumor immunotherapy? Cancer Immunol Immunother 2014; 63: 419–435.

    Article  CAS  Google Scholar 

  8. Mazzolini G, Prieto J, Melero I . Gene therapy of cancer with interleukin-12. Curr Pharm Des 2003; 9: 1981–1991.

    Article  CAS  Google Scholar 

  9. Freytag SO, Barton KN, Zhang Y . Efficacy of oncolytic adenovirus expressing suicide genes and interleukin-12 in preclinical model of prostate cancer. Gene Ther 2013; 20: 1131–1139.

    Article  CAS  Google Scholar 

  10. Paul D, Qazilbash MH, Song K, Xu H, Sinha BK, Liu J et al. Construction of a recombinant adeno-associated virus (rAAV) vector expressing murine interleukin-12 (IL-12). Cancer Gene Ther 2000; 7: 308–315.

    Article  CAS  Google Scholar 

  11. Wei LZ, Xu Y, Nelles EM, Furlonger C, Wang JC, Di Grappa MA et al. Localized interleukin-12 delivery for immunotherapy of solid tumours. J Cell Mol Med 2013; 17: 1465–1474.

    Article  CAS  Google Scholar 

  12. Passer BJ, Cheema T, Wu S, Wu CL, Rabkin SD, Martuza RL . Combination of vinblastine and oncolytic herpes simplex virus vector expressing IL-12 therapy increases antitumor and antiangiogenic effects in prostate cancer models. Cancer Gene Ther 2013; 20: 17–24.

    Article  CAS  Google Scholar 

  13. Tietje A, Li J, Yu X, Wei Y . MULT1E/mIL-12: a novel bifunctional protein for natural killer cell activation. Gene Ther 2014; 21: 468–475.

    Article  CAS  Google Scholar 

  14. Melero I, Quetglas JI, Reboredo M, Dubrot J, Rodriguez-Madoz JR, Mancheno U et al. Strict requirement for vector-induced type I interferon in efficacious antitumor responses to virally encoded IL-12. Cancer Res 2014; 75: 497–507.

    Article  Google Scholar 

  15. Garaulet G, Alfranca A, Torrente M, Escolano A, Lopez-Fontal R, Hortelano S et al. IL10 released by a new inflammation-regulated lentiviral system efficiently attenuates zymosan-induced arthritis. Mol Ther 2013; 21: 119–130.

    Article  CAS  Google Scholar 

  16. van de Loo FA, de Hooge AS, Smeets RL, Bakker AC, Bennink MB, Arntz OJ et al. An inflammation-inducible adenoviral expression system for local treatment of the arthritic joint. Gene Ther 2004; 11: 581–590.

    Article  CAS  Google Scholar 

  17. Khoury M, Adriaansen J, Vervoordeldonk MJ, Gould D, Chernajovsky Y, Bigey P et al. Inflammation-inducible anti-TNF gene expression mediated by intra-articular injection of serotype 5 adeno-associated virus reduces arthritis. J Gene Med 2007; 9: 596–604.

    Article  CAS  Google Scholar 

  18. Gillessen S, Carvajal D, Ling P, Podlaski FJ, Stremlo DL, Familletti PC et al. Mouse interleukin-12 (IL-12) p40 homodimer: a potent IL-12 antagonist. Eur J Immunol 1995; 25: 200–206.

    Article  CAS  Google Scholar 

  19. Jalah R, Rosati M, Ganneru B, Pilkington GR, Valentin A, Kulkarni V et al. The p40 subunit of interleukin (IL)-12 promotes stabilization and export of the p35 subunit: implications for improved IL-12 cytokine production. J Biol Chem 2013; 288: 6763–6776.

    Article  CAS  Google Scholar 

  20. Rodriguez A, Flemington EK . Transfection-mediated cell-cycle signaling: considerations for transient transfection-based cell-cycle studies. Anal Biochem 1999; 272: 171–181.

    Article  CAS  Google Scholar 

  21. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D . Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15: 871–875.

    Article  CAS  Google Scholar 

  22. Scherr M, Battmer K, Blomer U, Ganser A, Grez M . Quantitative determination of lentiviral vector particle numbers by real-time PCR. Biotechniques 2001; 31: 520, 522, 524, passim.

    Article  CAS  Google Scholar 

  23. Schoenhaut DS, Chua AO, Wolitzky AG, Quinn PM, Dwyer CM, McComas W et al. Cloning and expression of murine IL-12. J Immunol 1992; 148: 3433–3440.

    CAS  PubMed  Google Scholar 

  24. Chaplin PJ, Camon EB, Villarreal-Ramos B, Flint M, Ryan MD, Collins RA . Production of interleukin-12 as a self-processing 2A polypeptide. J Interferon Cytokine Res 1999; 19: 235–241.

    Article  CAS  Google Scholar 

  25. De Rose R, Scheerlinck JP, Casey G, Wood PR, Tennent JM, Chaplin PJ . Ovine interleukin-12: analysis of biologic function and species comparison. J Interferon Cytokine Res 2000; 20: 557–564.

    Article  CAS  Google Scholar 

  26. Ryan MD, King AM, Thomas GP . Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. J Gen Virol 1991; 72: 2727–2732.

    Article  CAS  Google Scholar 

  27. de Felipe P, Hughes LE, Ryan MD, Brown JD . Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. J Biol Chem 2003; 278: 11441–11448.

    Article  CAS  Google Scholar 

  28. Prussin C, Metcalfe DD . Detection of intracytoplasmic cytokine using flow cytometry and directly conjugated anti-cytokine antibodies. J Immunol Methods 1995; 188: 117–128.

    Article  CAS  Google Scholar 

  29. Cekic C, Day YJ, Sag D, Linden J . Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment. Cancer Res 2014; 74: 7250–7259.

    Article  CAS  Google Scholar 

  30. Sato Y, Goto Y, Narita N, Hoon DS . Cancer cells expressing Toll-like receptors and the tumor microenvironment. Cancer Microenviron 2009; 2: 205–214.

    Article  Google Scholar 

  31. Arber C, Abhyankar H, Heslop HE, Brenner MK, Liu H, Dotti G et al. The immunogenicity of virus-derived 2A sequences in immunocompetent individuals. Gene Ther 2013; 20: 958–962.

    Article  CAS  Google Scholar 

  32. Pavlin D, Cemazar M, Sersa G, Tozon N . IL-12 based gene therapy in veterinary medicine. J Transl Med 2012; 10: 234–244.

    Article  CAS  Google Scholar 

  33. Van der Jeught K, Bialkowski L, Daszkiewicz L, Broos K, Goyvaerts C, Renmans D et al. Targeting the tumor microenvironment to enhance antitumor immune responses. Oncotarget 2015; 6: 1359–1381.

    Article  Google Scholar 

  34. Rodriguez-Madoz JR, Prieto J, Smerdou C . Semliki forest virus vectors engineered to express higher IL-12 levels induce efficient elimination of murine colon adenocarcinomas. Mol Ther 2005; 12: 153–163.

    Article  CAS  Google Scholar 

  35. Triozzi PL, Strong TV, Bucy RP, Allen KO, Carlisle RR, Moore SE et al. Intratumoral administration of a recombinant canarypox virus expressing interleukin 12 in patients with metastatic melanoma. Hum Gene Ther 2005; 16: 91–100.

    Article  CAS  Google Scholar 

  36. Weiss JM, Subleski JJ, Wigginton JM, Wiltrout RH . Immunotherapy of cancer by IL-12-based cytokine combinations. Expert Opin Biol Ther 2007; 7: 1705–1721.

    Article  CAS  Google Scholar 

  37. Quetglas JI, Labiano S, Aznar MA, Bolanos E, Azpilikueta A, Rodriguez I et al. Virotherapy with a Semliki forest virus-based vector encoding IL12 synergizes with PD-1/PD-L1 blockade. Cancer Immunol Res 2015; 3: 449–454.

    Article  CAS  Google Scholar 

  38. Melero I, Berman DM, Aznar MA, Korman AJ, Gracia JL, Haanen J . Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer 2015; 15: 457–472.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Filip Lim for critical reading of the manuscript and helpful discussions. We also gratefully thank Dr BK Felber for providing us with the AG250-DPmuIL12opt plasmid. AR is supported by the Spanish Ministry of Economy and Competitivity (MINECO; SAF2012–32166) and the Comunidad Autónoma de Madrid (S2010/BMD-2312). JMZ is supported by the Instituto de Salud de Carlos III (PI12/01135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Rodríguez.

Ethics declarations

Competing interests

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenzo, C., Pérez-Chacón, G., Garaulet, G. et al. Efficient expression of bioactive murine IL12 as a self-processing P2A polypeptide driven by inflammation-regulated promoters in tumor cell lines. Cancer Gene Ther 22, 542–551 (2015). https://doi.org/10.1038/cgt.2015.53

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2015.53

This article is cited by

Search

Quick links