Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Targeted radionuclide therapies for pancreatic cancer

Abstract

Pancreatic malignancies, the fourth leading cause of cancer deaths, have an aggressive behavior with poor prognosis, resulting in a 5-year survival rate of only 4%. It is typically a silent malignancy until patients develop metastatic disease. Targeted radionuclide therapies of cancer such as radiolabeled peptides, which bind to the receptors overexpressed by cancer cells and radiolabeled antibodies to tumor-specific antigens provide a viable alternative to chemotherapy and external beam radiation of metastatic cancers. Multiple clinical trials of targeted radionuclide therapy of pancreatic cancer have been performed in the last decade and demonstrated safety and potential efficacy of radionuclide therapy for treatment of this formidable disease. Although a lot of progress has been made in treatment of pancreatic neuroendocrine tumors with radiolabeled 90Y and 177Lu somatostatin peptide analogs, pancreatic adenocarcinomas remain a major challenge. Novel approaches such as peptides and antibodies radiolabeled with alpha emitters, pre-targeting, bispecific antibodies and biological therapy based on the radioactive tumorlytic bacteria might offer a potential breakthrough in treatment of pancreatic adenocarcinomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F et al. EMT and dissemination precede pancreatic tumor formation. Cell 2012; 148: 349.

    Article  CAS  Google Scholar 

  2. Maitra A, Hruban RH . Pancreatic cancer. Annu Rev Pathol 2008; 3: 157.

    Article  CAS  Google Scholar 

  3. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007; 15: 1960.

    Article  Google Scholar 

  4. Kulke MH, Blaszkowski LS, Ryan DP, Clark JW, Meyerhardt JA, Zhu AX et al. Capecitabine plus Erlotinib in gemcitabine-refractory advanced pancreatic cancer. J Clin Oncol 2007; 25: 4787.

    Article  CAS  Google Scholar 

  5. Dash A, Knapp FF, Pillai MR . Targeted radionuclide therapy—an overview. Curr Radiopharm 2013; 6: 152–180.

    Article  CAS  Google Scholar 

  6. Kaemmerer D, Prasad V, Daffner W, Hörsch D, Klöppel G, Hommann M et al. Neoadjuvant peptide receptor radionuclide therapy for an inoperable neuroendocrine pancreatic tumor. World J Gastroenterol 2009; 15: 5867–5870.

    Article  Google Scholar 

  7. Sansovini M, Severi S, Ambrosetti A, Monti M, Nanni O, Sarnelli et al. Treatment with the radiolabelled somatostatin analog 177Lu-DOTATATE for advanced pancreatic neuroendocrine tumors. Neuroendocrinology 2013; 97: 347–354.

    Article  CAS  Google Scholar 

  8. Ezziddin S, Lauschke H, Schaefers M, Meyer C, van Essen M, Biersack HJ et al. Neoadjuvant downsizing by internal radiation: a case for preoperative peptide receptor radionuclide therapy in patients with pancreatic neuroendocrine tumors. Clin Nucl Med 2012; 37: 102–104.

    Article  Google Scholar 

  9. Delpassand ES, Samarghandi A, Zamanian S, Wolin EM, Hamiditabar M, Espenan GD et al. Peptide receptor radionuclide therapy with 177Lu-DOTATATE for patients with somatostatin receptor–expressing neuroendocrine tumors: the first US phase 2 experience. Pancreas 2014; 43: 518–525.

    Article  CAS  Google Scholar 

  10. van Schaik E, van Vliet EI, Feelders RA, Krenning EP, Khan S, Kamp K et al. Improved control of severe hypoglycemia in patients with malignant insulinomas by peptide receptor radionuclide therapy. J Clin Endocrinol Metab 2011; 96: 3381–3389.

    Article  CAS  Google Scholar 

  11. Fischbach J, Gut P, Matysiak-Grześ M, Klimowicz A, Gryczyńska M, Waśko R et al. Combined octreotide and peptide receptor radionuclide therapy ((90)Y-DOTA-TATE) in case of malignant insulinoma. Neuro Endocrinol Lett 2012; 33: 273–278.

    PubMed  Google Scholar 

  12. Sainz-Esteban A, Baum RP . Successful treatment of metastasized pancreatic vasoactive intestinal polypeptide-secreting tumor unresponsive to high-dose octreotide by peptide receptor radionuclide therapy using 90Y DOTATATE. Clin Nucl Med 2013; 38: 996–997.

    Article  Google Scholar 

  13. Sowa-Staszczak A, Pach D, Stefańska A, Tomaszuk M, Lenda-Tracz W, Mikołajczak R et al. Can treatment using radiolabelled somatostatin analogue increase the survival rate in patients with non-functioning neuroendocrine pancreatic tumours? Nucl Med Rev Cent East Eur 2011; 14: 73–78.

    Article  Google Scholar 

  14. Sabet A, Ezziddin K, Pape UF, Ahmadzadehfar H, Mayer K, Pöppel T et al. Long-term hematotoxicity after peptide receptor radionuclide therapy with 177Lu-octreotate. J Nucl Med 2013; 54: 1857–1861.

    Article  CAS  Google Scholar 

  15. Sierra ML, Agazzi A, Bodei L, Pacifici M, Aricò D, De Cicco C et al. Lymphocytic toxicity in patients after peptide-receptor radionuclide therapy (PRRT) with 177Lu-DOTATATE and 90Y-DOTATOC. Cancer Biother Radiopharm 2009; 24: 659–665.

    Article  CAS  Google Scholar 

  16. de Jong M, Breeman WA, Valkema R, Bernard BF, Krenning EP . Combination radionuclide therapy using 177Lu and 90Y-labeled somatostatin analogs. J Nucl Med 2005; 46: 13S–17S.

    CAS  PubMed  Google Scholar 

  17. Norenberg JP, Krenning BJ, Konings IR, Kusewitt DF, Nayak TK, Anderson TL et al. 213Bi-[DOTA0,Tyr3]octreotide peptide receptor radionuclide therapy of pancreatic tumors in a preclinical animal model. Clin Cancer Res 2006; 12: 897–903.

    Article  CAS  Google Scholar 

  18. Steiner M, Neri D . Antibody-radionuclide conjugates for cancer therapy: historical considerations and new trends. Clin Cancer Res 2011; 17: 6406–6416.

    Article  CAS  Google Scholar 

  19. Sultana A, Shore S, Raraty MG, Vinjamuri S, Evans JE, Smith CT et al. Randomised Phase I/II trial assessing the safety and efficacy of radiolabelled anti-carcinoembryonic antigen I(131) KAb201 antibodies given intra-arterially or intravenously in patients with unresectable pancreatic adenocarcinoma. BMC Cancer 2009; 9: 66–71.

    Article  Google Scholar 

  20. Gulec SA, Cohen SJ, Pennington KL, Zuckier LS, Hauke RJ, Horne H et al. Treatment of advanced pancreatic carcinoma with 90Y-Clivatuzumab Tetraxetan: a phase I single-dose escalation trial. Clin Cancer Res 2011; 17: 4091–4100.

    Article  CAS  Google Scholar 

  21. Morgan MA, Parsels LA, Maybaum J, Lawrence TS . Improving gemcitabine-mediated radiosensitization using molecularly targeted therapy: a review. Clin Cancer Res. 2008; 14: 6744–6750.

    Article  CAS  Google Scholar 

  22. Pauwels B, Korst AE, Lardon F, Vermorken JB . Combined modality therapy of gemcitabine and radiation. Oncologist 2005; 10: 34–51.

    Article  CAS  Google Scholar 

  23. Ocean AJ, Pennington KL, Guarino MJ, Sheikh A, Bekaii-Saab T, Serafini et al. Fractionated radioimmunotherapy with 90Y‐clivatuzumab tetraxetan and low‐dose gemcitabine is active in advanced pancreatic cancer. Cancer 2012; 118: 5497–5506.

    Article  CAS  Google Scholar 

  24. Inui A, Chung YS, Sawada T, Kondo Y, Ho JJ, Kim YS et al. Radioimmunotherapy for pancreatic carcinoma using (131)I-labeled monoclonal antibody Nd2 in xenografted nude mice. Jpn J Cancer Res 1996; 87: 977–984.

    Article  CAS  Google Scholar 

  25. Kamigaki T, Yamamoto M, Ohyanagi H, Ohya M, Shimazoe T, Kono et al. Therapy and imaging of pancreatic carcinoma xenografts with radioiodine-labeled chimeric monoclonal antibody A10 and its Fab fragment. Jpn J Cancer Res 1995; 86: 1216–1223.

    Article  CAS  Google Scholar 

  26. Maeda M, Shoji M, Kawagoshi T, Futatsuya R, Honda T, Brady LW . Distribution of 111In- and 125I-labeled monoclonal antibody 17-1A in mice bearing xenografts of human pancreatic carcinoma HuP-T4. Cancer 1994; 73: 800–807.

    Article  CAS  Google Scholar 

  27. Baidoo KE, Yong K, Brechbiel MW . Molecular pathways: targeted α-particle radiation therapy. Clin Cancer Res. 2013; 19: 530–537.

    Article  CAS  Google Scholar 

  28. Kurtzman SH, Russo A, Mitchell JB, DeGraff W, Sindelar WF, Brechbiel MW et al. 212Bismuth linked to an antipancreatic carcinoma antibody: model for alpha-particle-emitter radioimmunotherapy. J Natl Cancer Inst 1988; 80: 449–452.

    Article  CAS  Google Scholar 

  29. Bryan RA, Jiang Z, Jandl T, Strauss J, Koba W, Onyedika C . Treatment of experimental pancreatic cancer with 213-Bismuth-labeled chimeric antibody to single-strand DNA. Expert Rev Anticancer Ther 2014; 14: 1243–1249.

    Article  CAS  Google Scholar 

  30. Nishihara T, Sawada T, Yamamoto A, Yamashita Y, Ho JJ, Kim YS et al. Antibody-dependent cytotoxicity mediated by chimeric monoclonal antibody Nd2 and experimental immunotherapy for pancreatic cancer. Jpn J Cancer Res 2000; 91: 817–824.

    Article  CAS  Google Scholar 

  31. Gold DV, Goldenberg DM, Karacay H, Rossi EA, Chang CH, Cardillo TM et al. A novel bispecific, trivalent antibody construct for targeting pancreatic carcinoma. Cancer Res 2008; 68: 4819–4826.

    Article  CAS  Google Scholar 

  32. Karacay H, Sharkey RM, Gold DV, Ragland DR, McBride WJ, Rossi EA et al. Pretargeted radioimmunotherapy of pancreatic cancer xenografts: TF10–90Y-IMP-288 alone and combined with gemcitabine. J Nucl Med 2009; 50: 2008–2016.

    Article  Google Scholar 

  33. Al-Ejeh F, Pajic M, Shi W, Kalimutho M, Miranda M, Nagrial AM et al. Gemcitabine and CHK1 inhibition potentiate EGFR-directed radioimmunotherapy against pancreatic ductal adenocarcinoma. Clin Cancer Res. 2014; 20: 3187–3197.

    Article  CAS  Google Scholar 

  34. Sharkey RM, Karacay H, Govindan SV, Goldenberg DM . Combination radioimmunotherapy and chemoimmunotherapy involving different or the same targets improves therapy of human pancreatic carcinoma xenograft models. Mol Cancer Ther 2011; 10: 1072–1081.

    Article  CAS  Google Scholar 

  35. Le DT, Wang-Gillam A, Picozzi V, Greten TF, Crocenzi T, Springett G et al. Safety and survival with GVAX pancreas prime and Listeria Monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol 2015; 33: 1325–1333.

    Article  CAS  Google Scholar 

  36. Quispe-Tintaya W, Chandra D, Jahangir A, Harris M, Casadevall A, Dadachova E et al. A non-toxic radioactive Listeriaat is a highly effective therapy against metastatic pancreatic cancer. Proc Natl Acad Sci USA 2013; 110: 8668–8673.

    Article  CAS  Google Scholar 

  37. Stritzker J, Szalay AA . Single-agent combinatorial cancer therapy. Proc Natl Acad Sci USA 2013; 110: 8325–8326.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Dadachova.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, M., Da Silva, R., Gravekamp, C. et al. Targeted radionuclide therapies for pancreatic cancer. Cancer Gene Ther 22, 375–379 (2015). https://doi.org/10.1038/cgt.2015.32

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2015.32

This article is cited by

Search

Quick links