Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhanced expression of the β4-galactosyltransferase 2 gene impairs mammalian tumor growth

Abstract

Altered N-glycosylation of membrane proteins is associated with malignant transformation of cells. We found that the expression of the β4-galactosyltransferase 2 (β4GalT2) gene is decreased markedly during the transformation. Here, we examined whether the tumor growth activity of B16-F10 mouse melanoma cells can be reduced by the enhanced expression of the β4GalT2 gene. We isolated a clone, B16-β4GalT2, showing its β4GalT2 transcript 2.5 times higher than a control clone, B16-mock, by transducing its cDNA, and transplanted them subcutaneously into C57BL/6 mice to examine their tumor growth activity. The results showed that the average size of tumors formed with B16-mock cells is 13.1±0.76 mm, whereas that of tumors formed with B16-β4GalT2 cells is 5.1±1.13 mm (P<0.01) 2 weeks after transplantation. Immunohistochemical analyses showed that the apoptosis and the suppression of angiogenesis are induced in the tumors upon transduction of the β4GalT2 gene. To pursue a clinical usefulness of the β4GalT2 gene for suppressing human tumor growth, we injected adenoviruses carrying the human β4GalT2 cDNA into HuH-7 human hepatocellular carcinomas developed in severe combined immunodeficient mice, and observed marked growth retardation of the tumors. The enhancement of the β4GalT2 gene expression in tumors is one of the promising approaches to suppress human tumor growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kobata A . Altered glycosylation of surface glycoproteins in tumor cells and its clinical application. Pigment Cell Res 1989; 2: 304–308.

    Article  CAS  PubMed  Google Scholar 

  2. Yamashita K, Ohkura T, Tachibana Y, Takasaki S, Kobata A . Comparative study of the oligosaccharides released from baby hamster kidney cells and their polyoma transformant by hydrazinolysis. J Biol Chem 1984; 259: 10834–10840.

    CAS  PubMed  Google Scholar 

  3. Pierce M, Arango J . Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine-linked tri- and tetraantennary glycopeptides containing [GlcNAc-β-(1,6)Man-α-(1,6)Man] and poly-N-acetyllactosamine sequences than baby hamster kidney cells. J Biol Chem 1986; 261: 10772–10777.

    CAS  PubMed  Google Scholar 

  4. Dennis JW, Laferte S . Oncodevelopmental expression of -GlcNAcβ1-6- Manα1-6Manβ1-branched asparagine-linked oligosaccharides in murine tissues and human breast carcinomas. Cancer Res 1989; 49: 945–950.

    CAS  PubMed  Google Scholar 

  5. Cummings RD, Trowbridge IS, Kornfeld S . A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-GlcNAc:α-D-mannoside β1,6N-acetylglucosaminyltransferase. J Biol Chem 1982; 257: 13421–13427.

    CAS  PubMed  Google Scholar 

  6. Yamashita K, Tachibana Y, Ohkura T, Kobata A . Enzymatic basis for the structural changes of asparagine-linked sugar chains of membrane glycoproteins of baby hamster kidney cells induced by polyoma transformation. J Biol Chem 1984; 260: 3963–3969.

    Google Scholar 

  7. Arango J, Pierce M . Comparison of N-acetylglucosaminyltransferase V activities in Rous sarcoma-transformed baby hamster kidney (RS-BHK) and BHK cells. J Cell Biochem 1988; 37: 225–231.

    Article  CAS  PubMed  Google Scholar 

  8. Palcic MM, Ripka J, Kaur KJ, Shoreibah M, Hindsgaul O et al. Regulation of N-acetylglucosaminyltransferase V activity. J Biol Chem 1990; 265: 6759–6769.

    CAS  PubMed  Google Scholar 

  9. Lu Y, Chaney W . Induction of N-acetylglucosaminyltransferase V by elevated expression of activated or proto-Ha-ras oncogenes. Mol Cell Biochem 1993; 122: 85–92.

    Article  CAS  PubMed  Google Scholar 

  10. Cummings RD, Trowbridge IS, Kornfeld S . A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseorus vulgaris is deficient in UDP-GlcNAc:α-D-mannoside β1,6-N-acetylglucosaminyltransferase. J Biol Chem 1982; 257: 13421–13427.

    CAS  PubMed  Google Scholar 

  11. Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS . β1-6 Branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 1987; 236: 582–585.

    Article  CAS  PubMed  Google Scholar 

  12. Asada M, Furukawa K, Segawa K, Endo T, Kobata A . Increased expression of highly branched N-glycans at cell surface is correlated with the malignant phenotypes of mouse tumor cells. Cancer Res 1997; 57: 1073–1080.

    CAS  PubMed  Google Scholar 

  13. Furukawa K, Clausen H . β4-Galactosyltransferase-II-III, -IV, -V, -VI and -VII. In: Taniguchi N, Honke K, Fukuda M, (eds) Handbook of Glycosyltransferases and Related Genes. Springer: Tokyo, 2002 pp 20–26.

    Chapter  Google Scholar 

  14. Zhou H, Ma H, Wei W, Ji D, Song X, Sun J et al. B4GALT family mediates the multidrug resistance of human leukemia cells by reducing the hedgehog pathway and the expression of p-glycoprotein and multidrug resistance-associated protein 1. Cell Death Dis 2013; 4: e654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou J, Wei Y, Liu D, Ge X, Zhou F, Jiang XY et al. Identification of β1,4GalT II as a target gene of p53-mediated HeLa cell apoptosis. J Biochem 2008; 143: 547–554.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang J, Zhou J, Wei Y, Shen J, Liu D, Chen X et al. β1,4GalT-II increases cisplatin-induced apoptosis in HeLa cells depending on its Golgi localization. Biochem Biophys Res Commun 2007; 358: 41–46.

    Article  CAS  PubMed  Google Scholar 

  17. Wei Y, Liu D, Ge Y, Zhou F, Xu J, Chen H et al. Down-regulation of β1,4GalT V at protein level contributes to arsenic trioxide-induced glioma cell apoptosis. Cancer Lett 2008; 267: 96–105.

    Article  CAS  PubMed  Google Scholar 

  18. Shirane K, Sato T, Segawa K, Furukawa K . Involvement of β-1,4-galactosyltransferase V in malignant transformation-associated changes in glycosylation. Biochem Biophys Res Commun 1999; 265: 434–438.

    Article  CAS  PubMed  Google Scholar 

  19. Sato T, Shirane K, Kido M, Furukawa K . Correlated gene expression between β-1,4-galactosyltransferase V and N-acetylglucosaminyltransferase V in human cancer cell lines. Biochem Biophys Res Commun 2000; 276: 1019–1023.

    Article  CAS  PubMed  Google Scholar 

  20. Guo S, Sato T, Shirane K, Furukawa K . Galactosylation of N-linked oligosaccharides by human β-1,4-galactosyltransferases I, II, III, IV, V, and VI expressed in Sf-9 cells. Glycobiology 2001; 11: 813–820.

    Article  CAS  PubMed  Google Scholar 

  21. Ito H, Kameyama A, Sato T, Sukegawa M, Ishia HK, Narimatsu H . Strategy for the fine characterization of glycosyltransferase specificity using isotopomer assembly. Nat Methods 2007; 4: 577–582.

    Article  CAS  PubMed  Google Scholar 

  22. van den Eijnden DH, Winterwirp H, Smeeman P, Schiphorst WE . Novikoff ascites tumor cells contain N-acetyllactosaminide β1→to 3 and β1→to 6 N-acetylglucosaminyltransferase activity. J Biol Chem 1983; 258: 3435–3437.

    CAS  PubMed  Google Scholar 

  23. Ohyama C, Tsuboi S, Fukuda M . Dual roles of sialyl Lewis X oligosaccharides in tumor metastasis and rejection by natural killer cells. EMBO J 1999; 18: 1516–1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tomizawa M, Yu L, Wada A, Tamaoki T, Kadomatsu K, Muramatsu T et al. A promoter region of the midkine gene that is frequently expressed in human hepatocellular carcinoma can activate a suicide gene as effectively as the α-fetoprotein promoter. Br J Cancer 2003; 89: 1086–1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mizuguchi H, Kay MA . A simple method for constructing E1- and E1/E4-deleted recombinant adenovirus vectors. Hum Gene Ther 1999; 10: 2013–2017.

    Article  CAS  PubMed  Google Scholar 

  26. Wirth T, Zender L, Schulte B, Mundt B, Plentz R, Rudolph KL et al. A telomerase-dependent conditionally replicating adenovirus for selective treatment of cancer. Cancer Res 2003; 63: 3181–3188.

    CAS  PubMed  Google Scholar 

  27. Tadokoro T, Yamamoto K, Kuwahara I, Fujisawa H, Ikekita M, Taniguchi A et al. Preferential reduction of the α-2,6-sialylation from cell surface N-glycans of human diploid fibroblastic cells by in vitro aging. Glycoconj J 2006; 23: 443–452.

    Article  CAS  PubMed  Google Scholar 

  28. Darzynkiewicz Z, Galkowski D, Zhao H . Analysis of apoptosis by cytometry using TUNEL assay. Methods 2008; 44: 250–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sato T, Furukawa K, Greenwalt DE, Kobata A . Most bovine milk fat globule membrane glycoproteins contain asparagine-linked sugar chains with GalNAcβ1-4GlcNAc groups. J Biochem 1993; 114: 890–900.

    Article  CAS  PubMed  Google Scholar 

  30. Kitamura N, Ikekita M, Hayakawa S, Funahashi H, Furukawa K . Suppression of proliferation and neurite extension of human neuroblastoma SH-SY5Y cells on immobilized Psathyrella velutina lectin. J Neurosci Res 2004; 75: 384–390.

    Article  CAS  PubMed  Google Scholar 

  31. Furukawa K, Roth S . Co-purification of galactosyltransferases from chick embryo liver. Biochem J 1985; 227: 573–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ogata S, Muramatsu T, Kobata A . Fractionation of glycopeptides by affinity column chromatography on concanavalin A-Sepharose. J Biochem 1975; 78: 687–696.

    Article  CAS  PubMed  Google Scholar 

  33. Baenziger JU, Fiete D . Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. J Biol Chem 1979; 254: 9795–9799.

    CAS  PubMed  Google Scholar 

  34. Glasgow LR, Paulson JC, Hill RL . Systematic purification of five glycosidases from Streptococcus (Diplococcus) pneumoniae. J Biol Chem 1977; 252: 8615–8623.

    CAS  PubMed  Google Scholar 

  35. Paulson JC, Prieels JP, Glasgow LR, Hill RL . Sialyl- and fucosyl-transferases in the biosynthesis of asparaginyl-linked oligosaccharides in glycoproteins: Mutually exclusive glycosylation by β-galactoside α2→6sialyltransferase and N-acetylglucosaminide α1→3fucosyltransferase. J Biol Chem 1978; 253: 5617–5624.

    CAS  PubMed  Google Scholar 

  36. Cummings RD, Kornfeld S . Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized Phaseolus vulgaris leukoagglutinating and erythroagglutinating lectins. J Biol Chem 1982; 257: 11230–11234.

    CAS  PubMed  Google Scholar 

  37. Lotan R, Skutelsky E, Danon D, Sharon N . The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J Biol Chem 1975; 250: 8518–8523.

    CAS  PubMed  Google Scholar 

  38. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  39. DeLisser HM, Christofidou-Solomidou M, Strieter RM, Burdick MD, Robinson CS, Wexler RS et al. Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol 1997; 151: 671–677.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Schluter C, Duchrow M, Wohlenberg C, Becker MH, Key G, Flad HD et al. The cell proliferation-associated antigen of antibody Ki-67: a very large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins. J Cell Biol 1993; 123: 513–522.

    Article  CAS  PubMed  Google Scholar 

  41. Heffernan M, Yousefi S, Dennis JW . Molecular characterization of P2B/LAMP-1, a major protein target of a metastasis-associated oligosaccharide structure. Cancer Res 1989; 49: 6077–6084.

    CAS  PubMed  Google Scholar 

  42. Guo H-B, Lee I, Kamar M, Akiyama SK, Pierce M . Aberrant N-glycosylation of β1 integrin causes reduced α5β1 integrin clustering and stimulates cell migration. Cancer Res 2002; 62: 6837–6845.

    CAS  PubMed  Google Scholar 

  43. Sefter REB, Sefter EA, Grimes WJ, Liotta LA, Stetler-Stevenson GW, Welch DR et al. Human melanoma cell invasion is inhibited in vitro by swainsonine and deoxymannojirimycin with a concomitant decrease in collagenase IV expression. Melanoma Res 1991; 1: 43–54.

    Article  Google Scholar 

  44. Akiyama SK, Yamada SS, Yamada KM . Analysis of the role of glycosylation of the human fibronectin receptor. J Biol Chem 1989; 264: 18011–18018.

    CAS  PubMed  Google Scholar 

  45. Kawano T, Takasaki S, Tao T-W, Kobata A . Altered glycosylation of β1 integrins associated with reduced adhesiveness to fibronectin and laminin. Int J Cancer 1993; 53: 91–96.

    Article  CAS  PubMed  Google Scholar 

  46. Zheng M, Fang H, Hakomori S . Functional role of N-glycosylation in α5β1 integrin receptor. J Biol Chem 1994; 269: 12325–12331.

    CAS  PubMed  Google Scholar 

  47. Leppa S, Heino J, Jalkanen M . Increased glycosylation of β1 integrins affects the interaction of transformed S115 mammary epithelial cells with laminin-1. Cell Growth Differ 1995; 6: 853–861.

    CAS  PubMed  Google Scholar 

  48. Tadokoro T, Ikekita M, Toda T, Ito H, Sato T, Nakatani R et al. Involvement of galectin-3 with vascular cell adhesion molecule-1 in growth regulation of mouse Balb/3T3 cells. J Biol Chem 2009; 284: 35556–35563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boscher C, Dennis JW, Nabi IR . Glycosylation, galectins and cellular signaling. Curr Opini Cell Biol 2011; 23: 383–392.

    Article  CAS  Google Scholar 

  50. Yoshihara T, Sugihara K, Kizuka Y, Oka S, Asano M . Learning/memory impairment and reduced expression of the HNK-1 carbohydrate in β4-galactosyltransferase-II-deficient mice. J Biol Chem 2009; 284: 12550–12561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tonoyama Y, Anzai D, Ikeda A, Kakuda S, Kinoshita M, Kawasaki T et al. Essential role of β-1,4-galactosyltransferase 2 during medaka (Oryzia latipes) gastrulation. Mech Dev 2009; 126: 580–594.

    Article  CAS  PubMed  Google Scholar 

  52. Kleene R, Schachner M . Glycans and neural cell interactions. Nat Rev Neurosci 2004; 5: 195–208.

    Article  CAS  PubMed  Google Scholar 

  53. Kido M, Asano M, Iwakura Y, Ichinose M, Miki M, Furukawa K . Presence of polysialic acid and HNK-1 carbohydrate on brain glycoproteins from β-1,4-galactosyltransferase-knockout mice. Biochem Biophys Res Commun 1998; 245: 860–864.

    Article  CAS  PubMed  Google Scholar 

  54. Lee SW, Moskowitz MA, Sims JR . Sonic hedgehog inversely regulates the expression of angiopoietin-1 and angiopoietin-2 in fibroblasts. Int J Mol Med 2007; 19: 445–451.

    PubMed  Google Scholar 

  55. Athar M, Li C, Tang X, Chi S, Zhang X, Kim AL et al. Inhibition of smoothened signaing prevents ultraviolet B-induced basal cell carcinomas through regulation of Fas expression and apoptosis. Cancer Res 2004; 64: 7545–7552.

    Article  CAS  PubMed  Google Scholar 

  56. Adolphe C, Hetherington R, Ellis T, Wainwright B . Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res 2006; 66: 2081–2088.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the late Emeritus Professor Hiroshi Terayama in the Zoological Institute, Faculty of Science at the University of Tokyo, who educated and encouraged one of the authors (KF) for many years. We are grateful to Yumi Kobayashi and Kaori Wada at Tokyo Medical and Pharmaceutical College of Technology for their technical assistance. This work was supported by the Grants-in-Aid for Scientific Research (10680696 and 22370048) from the Ministry of Education, Science, Sports, Culture and Technology (MEXT) of Japan, Practical Application Research Fund from Japan Science Technology, and Institutional Grants from Nagaoka University of Technology to KF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Furukawa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Current affiliations since the completion of the study: KS, KYORIN Pharmaceutical Co., Ltd., Chiyoda-ku, Tokyo 101-8311, Japan; SS, Research Division, Alist Japan Co., Kobe, Hyogo 651-1513, Japan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tagawa, M., Shirane, K., Yu, L. et al. Enhanced expression of the β4-galactosyltransferase 2 gene impairs mammalian tumor growth. Cancer Gene Ther 21, 219–227 (2014). https://doi.org/10.1038/cgt.2014.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2014.21

This article is cited by

Search

Quick links