Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncolytic bovine herpesvirus type 1 infects and kills breast tumor cells and breast cancer-initiating cells irrespective of tumor subtype

Abstract

Oncolytic viruses are attractive cancer therapeutics because of their unique mechanisms of tumor cell targeting and the absence of toxic side effects associated with current treatments. Bovine herpesvirus type 1 (BHV-1) is a species-specific herpesvirus that fails to induce cytopathic effects in normal human cells, but is capable of infecting and killing a variety of immortalized and transformed human cell types, including human breast tumor cell lines from luminal, basal A and basal B subtypes, representing a variety of receptor expression profiles. BHV-1 is capable of initiating replication in and killing both bulk and side population cells, the latter of which have enhanced tumor-initiating capacity. Despite the lack of a productive infection or secretion of cytotoxic factors, BHV-1 infection decreases cellular viability in long-term culture following low multiplicity of infection. Moreover, BHV-1-infected MCF7 cells are significantly diminished in their capacity to form tumors in vivo. Overall, these studies suggest that oncolytic BHV-1 targets bulk breast cancer cells and cancer-initiating cells from luminal and basal subtypes by a novel mechanism that is not contingent upon cellular receptor expression status.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Cervantes-Garcia D, Ortiz-Lopez R, Mayek-Perez N, Rojas-Martinez A . Oncolytic virotherapy. Ann Hepatol 2008; 7: 34–45.

    CAS  PubMed  Google Scholar 

  2. Vaha-Koskela MJ, Heikkila JE, Hinkkanen AE . Oncolytic viruses in cancer therapy. Cancer Lett 2007; 254: 178–216.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Markert JM, Liechty PG, Wang W, Gaston S, Braz E, Karrasch M et al. Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol Ther 2009; 17: 199–207.

    Article  CAS  PubMed  Google Scholar 

  4. Senzer NN, Kaufman HL, Amatruda T, Nemunaitis M, Reid T, Daniels G et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol 2009; 27: 5763–5771.

    Article  CAS  PubMed  Google Scholar 

  5. Geevarghese SK, Geller DA, de Haan HA, Horer M, Knoll AE, Mescheder A et al. Phase I/II study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver. Hum Gene Ther 2010; 21: 1119–1128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakao A, Kasuya H, Sahin TT, Nomura N, Kanzaki A, Misawa M et al. A phase I dose-escalation clinical trial of intraoperative direct intratumoral injection of HF10 oncolytic virus in non-resectable patients with advanced pancreatic cancer. Cancer Gene Ther 2011; 18: 167–175.

    Article  CAS  PubMed  Google Scholar 

  7. Campadelli-Fiume G, Cocchi F, Menotti L, Lopez M . The novel receptors that mediate the entry of herpes simplex viruses and animal alphaherpesviruses into cells. Rev Med Virol 2000; 10: 305–319.

    Article  CAS  PubMed  Google Scholar 

  8. Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG . Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 1998; 280: 1618–1620.

    Article  CAS  PubMed  Google Scholar 

  9. Masson D, Jarry A, Baury B, Blanchardie P, Laboisse C, Lustenberger P et al. Overexpression of the CD155 gene in human colorectal carcinoma. Gut 2001; 49: 236–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sloan KE, Eustace BK, Stewart JK, Zehetmeier C, Torella C, Simeone M et al. CD155/PVR plays a key role in cell motility during tumor cell invasion and migration. BMC Cancer 2004; 4: 73.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hushur O, Takashima Y, Matsumoto Y, Otsuka H . Restriction of bovine herpesvirus 1 (BHV-1) growth in non-permissive cells beyond the expression of immediate early genes. J Vet Med Sci 2004; 66: 453–455.

    Article  CAS  PubMed  Google Scholar 

  12. Rodrigues R, Cuddington B, Mossman K . Bovine herpesvirus type 1 as a novel oncolytic virus. Cancer Gene Ther 2009; 17: 344–355.

    Article  PubMed  Google Scholar 

  13. Abril C, Engels M, Liman A, Hilbe M, Albini S, Franchini M et al. Both viral and host factors contribute to neurovirulence of bovine herpesviruses 1 and 5 in interferon receptor-deficient mice. J Virol 2004; 78: 3644–3653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng X, O’Neill HC . Oncogenesis and cancer stem cells: current opinions and future directions. J Cell Mol Med 2009; 13: 4377–4384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hemmings C. . The elaboration of a critical framework for understanding cancer: the cancer stem cell hypothesis. Pathology 2010; 42: 105–112.

    Article  PubMed  Google Scholar 

  16. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A . Tumor growth need not be driven by rare cancer stem cells. Science 2007; 317: 337.

    Article  CAS  PubMed  Google Scholar 

  17. Dean M, Fojo T, Bates S . Tumour stem cells and drug resistance. Nat Rev 2005; 5: 275–284.

    Article  CAS  Google Scholar 

  18. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. . Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183: 1797–1806.

    Article  CAS  PubMed  Google Scholar 

  19. Wu C, Alman BA . Side population cells in human cancers. Cancer Lett 2008; 268: 1–9.

    Article  CAS  PubMed  Google Scholar 

  20. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U et al. A distinct ‘side population’ of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 2004; 101: 14228–14233.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci USA 2007; 104: 16158–16163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Han JS, Crowe DL . Tumor initiating cancer stem cells from human breast cancer cell lines. Int J Oncol 2009; 34: 1449–1453.

    CAS  PubMed  Google Scholar 

  23. Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K, Tang DG . Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic. Cancer Res 2005; 65: 6207–6219.

    Article  CAS  PubMed  Google Scholar 

  24. Engelmann K, Shen H, Finn OJ . MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1. Cancer Res 2008; 68: 2419–2426.

    Article  CAS  PubMed  Google Scholar 

  25. Cariati M, Naderi A, Brown JP, Smalley MJ, Pinder SE, Caldas C et al. Alpha-6 integrin is necessary for the tumourigenicity of a stem cell-like subpopulation within the MCF7 breast cancer cell line. Int J Cancer 2008; 122: 298–304.

    Article  CAS  PubMed  Google Scholar 

  26. Fillmore CM, Kuperwasser C . Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 2008; 10: R25.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cripe TP, Wang PY, Marcato P, Mahller YY, Lee PW . Targeting cancer-initiating cells with oncolytic viruses. Mol Ther 2009; 17: 1677–1682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Patel SA, Ndabahaliye A, Lim PK, Milton R, Rameshwar P . Challenges in the development of future treatments for breast cancer stem cells. Breast Cancer (London) 2010; 2: 1–11.

    Google Scholar 

  29. Marcato P, Dean CA, Giacomantonio CA, Lee PW . Oncolytic reovirus effectively targets breast cancer stem cells. Mol Ther 2009; 17: 972–979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bauerschmitz GJ, Ranki T, Kangasniemi L, Ribacka C, Eriksson M, Porten M et al. Tissue-specific promoters active in CD44+CD24−/low breast cancer cells. Cancer Res 2008; 68: 5533–5539.

    Article  CAS  PubMed  Google Scholar 

  31. Eriksson M, Guse K, Bauerschmitz G, Virkkunen P, Tarkkanen M, Tanner M et al. Oncolytic adenoviruses kill breast cancer initiating CD44+CD24−/low cells. Mol Ther 2007; 15: 2088–2093.

    Article  CAS  PubMed  Google Scholar 

  32. Lal R, Harris D, Postel-Vinay S, de Bono J . Reovirus: rationale and clinical trial update. Curr Opin Mol Ther 2009; 11: 532–539.

    CAS  PubMed  Google Scholar 

  33. Dey M, Ulasov IV, Tyler MA, Sonabend AM, Lesniak MS . Cancer stem cells: the final frontier for glioma virotherapy. Stem Cell Rev 2011; 7: 119–129.

    Article  PubMed Central  Google Scholar 

  34. Ahtiainen L, Mirantes C, Jahkola T, Escutenaire S, Diaconu I, Osterlund P et al. Defects in innate immunity render breast cancer initiating cells permissive to oncolytic adenovirus. PLoS One 2010; 5: e13859.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jenuwein T, Allis CD . Translating the histone code. Science 2001; 293: 1074–1080.

    Article  CAS  PubMed  Google Scholar 

  36. Sharma S, Kelly TK, Jones PA . Epigenetics in cancer. Carcinogenesis 2010; 31: 27–36.

    Article  CAS  PubMed  Google Scholar 

  37. Fernandez AF, Esteller M . Viral epigenomes in human tumorigenesis. Oncogene 2010; 29: 1405–1420.

    Article  CAS  PubMed  Google Scholar 

  38. Niller HH, Wolf H, Minarovits J. . Epigenetic dysregulation of the host cell genome in Epstein–Barr virus-associated neoplasia. Semin Cancer Biol 2009; 19: 158–164.

    Article  CAS  PubMed  Google Scholar 

  39. Adhya D, Basu A . Epigenetic modulation of host: new insights into immune evasion by viruses. J Biosci 2010; 35: 647–663.

    Article  CAS  PubMed  Google Scholar 

  40. Paschos K, Allday MJ . Epigenetic reprogramming of host genes in viral and microbial pathogenesis. Trends Microbiol 2010; 18: 439–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cullen BR . Viruses and microRNAs: RISCy interactions with serious consequences. Genes Dev 2011; 25: 1881–1894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu F, Stedman W, Yousef M, Renne R, Lieberman PM . Epigenetic regulation of Kaposi’s sarcoma-associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway. J Virol 2010; 84: 2697–2706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu C, Tang DG . MicroRNA regulation of cancer stem cells. Cancer Res 2011; 71: 5950–5954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsai HC, Baylin SB . Cancer epigenetics: linking basic biology to clinical medicine. Cell Res 2011; 21: 502–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yamada Y, Watanabe A . Epigenetic codes in stem cells and cancer stem cells. Adv Genet 2010; 70: 177–199.

    Article  CAS  PubMed  Google Scholar 

  46. Melcher A, Parato K, Rooney CM, Bell JC . Thunder and lightning: immunotherapy and oncolytic viruses collide. Mol Ther 2011; 19: 1008–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mastrangelo MJ, Maguire HC, Lattime EC . Intralesional vaccinia/GM-CSF recombinant virus in the treatment of metastatic melanoma. Adv Exp Med Biol 2000; 465: 391–400.

    Article  CAS  PubMed  Google Scholar 

  48. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  49. Herschkowitz JI, Zhao W, Zhang M, Usary J, Murrow G, Edwards D et al. Comparative oncogenomics identifies breast tumors enriched in functional tumor-initiating cells. Proc Natl Acad Sci USA 2012; 109: 2778–2783.

    Article  CAS  PubMed  Google Scholar 

  50. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439: 84–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Vikram Misra (University of Saskatchewan, Canada), Günther Keil (Friedrich-Loeffler-Institut, Germany) and Clinton Jones (University of Nebraska, USA) for reagents and Derek Cummings for technical assistance. AD held a Natural Sciences and Engineering Research Council studentship. BC holds a fellowship from the Canadian Breast Cancer Foundation. This work was sponsored by operating grants from the Cancer Research Society and the Canadian Cancer Society Research Institute (formerly the Canadian Breast Cancer Research Alliance). We acknowledge there are no financial conflicts of interest related to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K L Mossman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuddington, B., Dyer, A., Workenhe, S. et al. Oncolytic bovine herpesvirus type 1 infects and kills breast tumor cells and breast cancer-initiating cells irrespective of tumor subtype. Cancer Gene Ther 20, 282–289 (2013). https://doi.org/10.1038/cgt.2013.18

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2013.18

Keywords

This article is cited by

Search

Quick links