Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Potential use of folate-polyethylene glycol (PEG)-appended dendrimer (G3) conjugate with α-cyclodextrin as DNA carriers to tumor cells

Abstract

We previously reported that polyamidoamine STARBURST dendrimer (generation 3, G3) (dendrimer) conjugate with α-cyclodextrin (α-CyD) having an average degree of substitution of 2.4 of α-CyD (α-CDE) provided remarkable aspects as novel carriers for DNA and small-interfering RNA. To develop novel α-CDE derivatives with tumor cell specificity, we prepared folate-appended α-CDEs (Fol-α-CDEs) and folate-polyethylene glycol (PEG)-appended α-CDEs (Fol-PαCs) with the various degrees of substitution of folate (DSF), and evaluated in vitro and in vivo gene transfer activity, cytotoxicity, cellular association and physicochemical properties. In vitro gene transfer activity of Fol-α-CDEs (G3, DSF 2, 5 or 7) was lower than that of α-CDE (G3) in KB cells, folate receptor (FR)-overexpressing cancer cells. Of the three Fol-PαCs (G3, DSF 2, 5 or 7), Fol-PαC (G3, DSF 5) had the highest gene transfer activity in KB cells. The activity of Fol-PαC (G3, DSF 5) was significantly higher than that of α-CDE (G3) in KB cells, but not in A549 cells, FR-negative cells. Negligible cytotoxicity of the plasmid DNA (pDNA) complex with Fol-PαC (G3, DSF 5) was observed in KB cells or A549 cells up to a charge ratio of 100/1 (carrier/pDNA). The cellular association of the pDNA complex with Fol-PαC (G3, DSF 5) could be mediated by FR on KB cells, resulting in its efficient cellular uptake. Fol-PαC (G3, DSF 5) had a higher binding affinity with folate-binding protein than α-CDE (G3), although the physicochemical properties of pDNA complex with Fol-PαC (G3, DSF 5) were almost comparable to that with α-CDE (G3), although the onset charge ratio and the compaction ability of Fol-PαC (G3, DSF 5) were slightly different. Fol-PαC (G3, DSF 5) tended to show a higher gene transfer activity than α-CDE (G3) 12 h after intratumoral administration in mice. These results suggest that Fol-PαC (G3, DSF 5), not Fol-α-CDEs, could be potentially used as a FR-overexpressing cancer cell-selective DNA carrier.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Tomalia D, Baker H, Dewald J, Hall M, Kallos G, Martin S et al. A new class of polymers: starburt-dendritic macromolecules. Polymer J 1985; 17: 117–132.

    Article  CAS  Google Scholar 

  2. Esfand R, Tomalia DA . Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 2001; 6: 427–436.

    Article  CAS  Google Scholar 

  3. Braun CS, Vetro JA, Tomalia DA, Koe GS, Koe JG, Middaugh CR . Structure/function relationships of polyamidoamine/DNA dendrimers as gene delivery vehicles. J Pharm Sci 2005; 94: 423–436.

    Article  CAS  Google Scholar 

  4. Fant K, Esbjorner EK, Lincoln P, Norden B . DNA condensation by PAMAM dendrimers: self-assembly characteristics and effect on transcription. Biochemistry 2008; 47: 1732–1740.

    Article  CAS  Google Scholar 

  5. Dutta T, Jain NK, McMillan NA, Parekh HS . Dendrimer nanocarriers as versatile vectors in gene delivery. Nanomedicine 2010; 6: 25–34.

    Article  CAS  Google Scholar 

  6. Hui Z, He ZG, Zheng L, Li GY, Shen SR, Li XL . Studies on polyamidoamine dendrimers as efficient gene delivery vector. J Biomater Appl 2008; 22: 527–544.

    Article  Google Scholar 

  7. Davis ME, Brewster ME . Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 2004; 3: 1023–1035.

    Article  CAS  Google Scholar 

  8. Uekama K, Hirayama F, Irie T . Cyclodextrin drug carrier systems. Chem Rev 1998; 98: 2045–2076.

    Article  CAS  Google Scholar 

  9. Stella VJ, Rajewski RA . Cyclodextrins: their future in drug formulation and delivery. Pharm Res 1997; 14: 556–567.

    Article  CAS  Google Scholar 

  10. Ortiz Mellet C, Garcia Fernandez JM, Benito JM . Cyclodextrin-based gene delivery systems. Chem Soc Rev 2011; 40: 1586–1608.

    Article  Google Scholar 

  11. Roessler BJ, Bielinska AU, Janczak K, Lee I, Baker Jr JR . Substituted beta-cyclodextrins interact with PAMAM dendrimer-DNA complexes and modify transfection efficiency. Biochem Biophys Res Commun 2001; 283: 124–129.

    Article  CAS  Google Scholar 

  12. Croyle MA, Roessler BJ, Hsu CP, Sun R, Amidon GL . Beta cyclodextrins enhance adenoviral-mediated gene delivery to the intestine. Pharm Res 1998; 15: 1348–1355.

    Article  CAS  Google Scholar 

  13. Abdou S, Collomb J, Sallas F, Marsura A, Finance C . Beta-cyclodextrin derivatives as carriers to enhance the antiviral activity of an antisense oligonucleotide directed toward a coronavirus intergenic consensus sequence. Arch Virol 1997; 142: 1585–1602.

    Article  CAS  Google Scholar 

  14. Arima H, Kihara F, Hirayama F, Uekama K . Enhancement of gene expression by polyamidoamine dendrimer conjugates with α-, β-, and γ-cyclodextrins. Bioconjug Chem 2001; 12: 476–484.

    Article  CAS  Google Scholar 

  15. Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K . Effects of structure of polyamidoamine dendrimer on gene transfer efficiency of the dendrimer conjugate with α-cyclodextrin. Bioconjug Chem 2002; 13: 1211–1219.

    Article  CAS  Google Scholar 

  16. Kihara F, Arima H, Tsutsumi T, Hirayama F, Uekama K . In vitro and in vivo gene transfer by an optimized α-cyclodextrin conjugate with polyamidoamine dendrimer. Bioconjug Chem 2003; 14: 342–350.

    Article  CAS  Google Scholar 

  17. Wada K, Arima H, Tsutsumi T, Chihara Y, Hattori K, Hirayama F et al. Improvement of gene delivery mediated by mannosylated dendrimer/α-cyclodextrin conjugates. J Control Release 2005; 104: 397–413.

    Article  CAS  Google Scholar 

  18. Wada K, Arima H, Tsutsumi T, Hirayama F, Uekama K . Enhancing effects of galactosylated dendrimer/α-cyclodextrin conjugates on gene transfer efficiency. Biol Pharm Bull 2005; 28: 500–505.

    Article  CAS  Google Scholar 

  19. Arima H, Chihara Y, Arizono M, Yamashita S, Wada K, Hirayama F et al. Enhancement of gene transfer activity mediated by mannosylated dendrimer/α-cyclodextrin conjugate (generation 3, G3). J Control Release 2006; 116: 64–74.

    Article  CAS  Google Scholar 

  20. Arima H, Yamashita S, Mori Y, Hayashi Y, Motoyama K, Hattori K et al. In vitro and in vivo gene delivery mediated by Lactosylated dendrimer/α-cyclodextrin conjugates (G2) into hepatocytes. J Control Release 2010; 146: 106–117.

    Article  CAS  Google Scholar 

  21. Sahoo SK, Parveen S, Panda JJ . The present and future of nanotechnology in human health care. Nanomedicine 2007; 3: 20–31.

    Article  CAS  Google Scholar 

  22. Mintzer MA, Simanek EE . Nonviral vectors for gene delivery. Chem Rev 2009; 109: 259–302.

    Article  CAS  Google Scholar 

  23. Sudimack J, Lee RJ . Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 2000; 41: 147–162.

    Article  CAS  Google Scholar 

  24. Ward CM . Folate-targeted non-viral DNA vectors for cancer gene therapy. Curr Opin Mol Ther 2000; 2: 182–187.

    CAS  PubMed  Google Scholar 

  25. Zhao Y, Liu S, Li Y, Jiang W, Chang Y, Pan S et al. Synthesis and grafting of folate-PEG-PAMAM conjugates onto quantum dots for selective targeting of folate-receptor-positive tumor cells. J Colloid Interface Sci 2010; 350: 44–50.

    Article  CAS  Google Scholar 

  26. Konda SD, Aref M, Wang S, Brechbiel M, Wiener EC . Specific targeting of folatedendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. Magma 2001; 12: 104–113.

    Article  CAS  Google Scholar 

  27. Shukla R, Thomas TP, Desai AM, Kotlyar A, Park SJ, Baker JR . HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2mAb. Nanotechnology 2008; 19: 295102.

    Article  Google Scholar 

  28. Singh I, Rehni AK, Kalra R, Joshi G, Kumar M . Dendrimers and their pharmaceutical applications-a review. Pharmazie 2008; 63: 491–496.

    CAS  PubMed  Google Scholar 

  29. Majoros IJ, Williams CR, Baker Jr JR . Current dendrimer applications in cancer diagnosis and therapy. Curr Top Med Chem 2008; 8: 1165–1179.

    Article  CAS  Google Scholar 

  30. Oh IK, Mok H, Park TG . Folate immobilized and PEGylated adenovirus for retargeting to tumor cells. Bioconjug Chem 2006; 17: 721–727.

    Article  CAS  Google Scholar 

  31. Antony AC, Kane MA, Portillo RM, Elwood PC, Kolhouse JF . Studies of the role of a particulate folate-binding protein in the uptake of 5-methyltetrahydrofolate by cultured human KB cells. J Biol Chem 1985; 260: 14911–14917.

    CAS  PubMed  Google Scholar 

  32. Stephenson SM, Low PS, Lee RJ . Folate receptor-mediated targeting of liposomal drugs to cancer cells. Methods Enzymol 2004; 387: 33–50.

    Article  CAS  Google Scholar 

  33. Leamon CP, Weigl D, Hendren RW . Folate copolymer-mediated transfection of cultured cells. Bioconjug Chem 1999; 10: 947–957.

    Article  CAS  Google Scholar 

  34. Gebhart CL, Kabanov AV . Evaluation of polyplexes as gene transfer agents. J Control Release 2001; 73: 401–416.

    Article  CAS  Google Scholar 

  35. Pack DW, Hoffman AS, Pun S, Stayton PS . Design and development of polymers for gene delivery. Nat Rev Drug Discov 2005; 4: 581–593.

    Article  CAS  Google Scholar 

  36. Doherty GJ, McMahon HT . Mechanisms of endocytosis. Annu Rev Biochem 2009; 78: 857–902.

    Article  CAS  Google Scholar 

  37. Arima H, Motoyama K . Recent findings concerning PAMAM dendrimer conjugates with cyclodextrins as carriers of DNA and RNA. Sensors 2009; 9: 6346–6361.

    Article  CAS  Google Scholar 

  38. Albertazzi L, Serresi M, Albanese A, Beltram F . Dendrimer internalization and intracellular trafficking in living cells. Mol Pharm 2010; 7: 680–688.

    Article  CAS  Google Scholar 

  39. Reddy JA, Dean D, Kennedy MD, Low PS . Optimization of folate-conjugated liposomal vectors for folate receptor-mediated gene therapy. J Pharm Sci 1999; 88: 1112–1118.

    Article  CAS  Google Scholar 

  40. Reddy JA, Low PS . Folate-mediated targeting of therapeutic and imaging agents to cancers. Crit Rev Ther Drug Carrier Syst 1998; 15: 587–627.

    Article  CAS  Google Scholar 

  41. Letrou-Bonneval E, Chevre R, Lambert O, Costet P, Andre C, Tellier C et al. Galactosylated multimodular lipoplexes for specific gene transfer into primary hepatocytes. J Gene Med 2008; 10: 1198–1209.

    Article  CAS  Google Scholar 

  42. Thomas M, Klibanov AM . Enhancing polyethylenimine's delivery of plasmid DNA into mammalian cells. Proc Natl Acad Sci USA 2002; 99: 14640–14645.

    Article  CAS  Google Scholar 

  43. Godbey WT, Wu KK, Hirasaki GJ, Mikos AG . Improved packing of poly(ethylenimine)/DNA complexes increases transfection efficiency. Gene Ther 1999; 6: 1380–1388.

    Article  CAS  Google Scholar 

  44. Gabrielson NP, Pack DW . Acetylation of polyethylenimine enhances gene delivery via weakened polymer/DNA interactions. Biomacromolecules 2006; 7: 2427–2435.

    Article  CAS  Google Scholar 

  45. Navarro G, Maiwald G, Haase R, Rogach AL, Wagner E, de Ilarduya CT et al. Low generation PAMAM dendrimer and CpG free plasmids allow targeted and extended transgene expression in tumors after systemic delivery. J Control Release 2010; 146: 99–105.

    Article  CAS  Google Scholar 

  46. Navarro G, Tros de Ilarduya C . Activated and non-activated PAMAM dendrimers for gene delivery in vitro and in vivo. Nanomedicine 2009; 5: 287–297.

    Article  CAS  Google Scholar 

  47. Matsumura Y, Maeda H . A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46: 6387–6392.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Arima.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arima, H., Arizono, M., Higashi, T. et al. Potential use of folate-polyethylene glycol (PEG)-appended dendrimer (G3) conjugate with α-cyclodextrin as DNA carriers to tumor cells. Cancer Gene Ther 19, 358–366 (2012). https://doi.org/10.1038/cgt.2012.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.9

Keywords

This article is cited by

Search

Quick links