Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Bacterial vectors for imaging and cancer gene therapy: a review

Abstract

The significant burden of resistance to conventional anticancer treatments in patients with advanced disease has prompted the need to explore alternative therapeutic strategies. The challenge for oncology researchers is to identify a therapy which is selective for tumors with limited toxicity to normal tissue. Engineered bacteria have the unique potential to overcome traditional therapies’ limitations by specifically targeting tumors. It has been shown that bacteria are naturally capable of homing to tumors when systemically administered resulting in high levels of replication locally, either external to (non-invasive species) or within tumor cells (pathogens). Pre-clinical and clinical investigations involving bacterial vectors require relevant means of monitoring vector trafficking and levels over time, and development of bacterial-specific real-time imaging modalities are key for successful development of clinical bacterial gene delivery. This review discusses the currently available imaging technologies and the progress to date exploiting these for monitoring of bacterial gene delivery in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Abelmann H . Cancer as I See It. New York Philosophical Library New York, NY, 1951.

    Google Scholar 

  2. Yu YA, Zhang Q, Szalay AA . Establishment and characterization of conditions required for tumor colonization by intravenously delivered bacteria. Biotechnol Bioeng 2008; 100: 567–578.

    CAS  PubMed  Google Scholar 

  3. Harada H, Itasaka S, Kizaka-Kondoh S, Shibuya K, Morinibu A, Shinomiya K et al. The Akt/mTOR pathway assures the synthesis of HIF-1alpha protein in a glucose- and reoxygenation-dependent manner in irradiated tumors. J Biol Chem 2009; 284: 5332–5342.

    CAS  PubMed  Google Scholar 

  4. Pawelek JM, Low KB, Bermudes D . Bacteria as tumor-targeting vectors. Lancet Oncol 2003; 4: 548–556.

    PubMed  Google Scholar 

  5. Baban CK, Cronin M, O’Hanlon D, O’Sullivan GC, Tangney M . Bacteria as vectors for gene therapy of cancer. Bioeng Bugs 2010; 1: 385–394.

    PubMed  PubMed Central  Google Scholar 

  6. Tangney M, Ahmad S, Collins SA, O’Sullivan GC . Gene therapy for prostate cancer. Postgrad Med 2010; 122: 166–180.

    PubMed  Google Scholar 

  7. Ahmad S, Casey G, Sweeney P, Tangney M, O’Sullivan GC . Prostate stem cell antigen DNA vaccination breaks tolerance to self-antigen and inhibits prostate cancer growth. Mol Ther 2009; 17: 1101–1108.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahmad S, Casey G, Cronin M, Rajendran S, Sweeney P, Tangney M et al. Induction of effective antitumor response after mucosal bacterial vector mediated DNA vaccination with endogenous prostate cancer specific antigen. J Urol 2011; 186: 687–693.

    CAS  PubMed  Google Scholar 

  9. Cronin M, Akin AR, Collins SA, Meganck J, Kim JB, Baban CK et al. High resolution in vivo bioluminescent imaging for the study of bacterial tumor targeting. PLoS One 2012; 7: e30940.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fujimori M . [Anaerobic bacteria as a gene delivery system for breast cancer therapy]. Nippon Rinsho 2008; 66: 1211–1218.

    PubMed  Google Scholar 

  11. Zhao M, Yang M, Li XM, Jiang P, Baranov E, Li S et al. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci USA 2005; 102: 755–760.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou S, Zhang M, Wang J . Tumor-targeted delivery of TAT-Apoptin fusion gene using Escherichia coli Nissle 1917 to colorectal cancer. Med Hypotheses 2011; 76: 533–534.

    CAS  PubMed  Google Scholar 

  13. Tangney M, van Pijkeren JP, Gahan CG . The use of Listeria monocytogenes as a DNA delivery vector for cancer gene therapy. Bioeng Bugs 2010; 1: 284–287.

    PubMed  PubMed Central  Google Scholar 

  14. Walther W, Petkov S, Kuvardina ON, Aumann J, Kobelt D, Fichtner I et al. Novel Clostridium perfringens enterotoxin suicide gene therapy for selective treatment of claudin-3- and -4-overexpressing tumors. Gene Ther 2012; 19: 494–503.

    CAS  PubMed  Google Scholar 

  15. Theys J, Landuyt AW, Nuyts S, Van Mellaert L, Lambin P, Anne J . Clostridium as a tumor-specific delivery system of therapeutic proteins. Cancer Detect Prev 2001; 25: 548–557.

    CAS  PubMed  Google Scholar 

  16. Tangney M . Gene therapy for cancer: dairy bacteria as delivery vectors. Discov Med 2010; 10: 195–200.

    PubMed  Google Scholar 

  17. van Pijkeren JP, Morrissey D, Monk IR, Cronin M, Rajendran S, O’Sullivan GC et al. A novel Listeria monocytogenes-based DNA delivery system for cancer gene therapy. Hum Gene Ther 2010; 21: 405–416.

    CAS  PubMed  Google Scholar 

  18. Minton NP . Clostridia in cancer therapy. Nat Rev Microbiol 2003; 1: 237–242.

    CAS  PubMed  Google Scholar 

  19. Hall SS . A Commotion in the Blood: Life, Death, and the Immune System. Little, Brown, 1998 London, 1997.

    Google Scholar 

  20. Heppner F, Mose JR . The liquefaction (oncolysis) of malignant gliomas by a non pathogenic Clostridium. Acta Neurochir (Wien) 1978; 42: 123–125.

    CAS  Google Scholar 

  21. Chorobik P, Marcinkiewicz J . Therapeutic vaccines based on genetically modified Salmonella: a novel strategy in cancer immunotherapy. Pol Arch Med Wewn 2011; 121: 461–466.

    CAS  PubMed  Google Scholar 

  22. Cunningham C, Nemunaitis J . A phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL-017. Version: April 9, 2001. Hum Gene Ther 2001; 12: 1594–1596.

    CAS  PubMed  Google Scholar 

  23. Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol 2002; 20: 142–152.

    PubMed  Google Scholar 

  24. Morales A, Eidinger D, Bruce AW . Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol 1976; 116: 180–183.

    CAS  PubMed  Google Scholar 

  25. Sylvester RJ . Bacillus Calmette-Guerin treatment of non-muscle invasive bladder cancer. Int J Urol 2011; 18: 113–120.

    CAS  PubMed  Google Scholar 

  26. Patyar S, Joshi R, Byrav DS, Prakash A, Medhi B, Das BK . Bacteria in cancer therapy: a novel experimental strategy. J Biomed Sci 2010; 17: 21.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cronin M, Ventura M, Fitzgerald GF, van Sinderen D . Progress in genomics, metabolism and biotechnology of bifidobacteria. Int J Food Microbiol 2011; 149: 4–18.

    CAS  PubMed  Google Scholar 

  28. Zhu LP, Yin Y, Xing J, Li C, Kou L, Hu B et al. Therapeutic efficacy of Bifidobacterium longum-mediated human granulocyte colony-stimulating factor and/or endostatin combined with cyclophosphamide in mouse-transplanted tumors. Cancer Sci 2009; 100: 1986–1990.

    CAS  PubMed  Google Scholar 

  29. Tang W, He Y, Zhou S, Ma Y, Liu G . A novel Bifidobacterium infantis-mediated TK/GCV suicide gene therapy system exhibits antitumor activity in a rat model of bladder cancer. J Exp Clin Cancer Res 2009; 28: 155.

    PubMed  PubMed Central  Google Scholar 

  30. Brader P, Stritzker J, Riedl CC, Zanzonico P, Cai S, Burnazi EM et al. Escherichia coli Nissle 1917 facilitates tumor detection by positron emission tomography and optical imaging. Clin Cancer Res 2008; 14: 2295–2302.

    CAS  PubMed  Google Scholar 

  31. Nemunaitis J, Cunningham C, Senzer N, Kuhn J, Cramm J, Litz C et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther 2003; 10: 737–744.

    Article  CAS  PubMed  Google Scholar 

  32. Tangney M . Editorial: in vivo imaging & gene therapy. Curr Gene Ther 2012; 12: 1.

    CAS  PubMed  Google Scholar 

  33. Hollon T . Researchers and regulators reflect on first gene therapy death. Nat Med 2000; 6: 6.

    CAS  PubMed  Google Scholar 

  34. Chuang K, Cheng T . Noninvasive imaging of reporter gene expression and distribution in vivo. Fooyin J Health Sci 2010; 2: 1–11.

    CAS  Google Scholar 

  35. Michelini E, Cevenini L, Mezzanotte L, Roda A . Luminescent probes and visualization of bioluminescence. Methods Mol Biol 2009; 574: 1–13.

    CAS  PubMed  Google Scholar 

  36. Morrissey D, O’Sullivan GC, Tangney M . Tumour targeting with systemically administered bacteria. Curr Gene Ther 2010; 10: 3–14.

    CAS  PubMed  Google Scholar 

  37. Tangney M, Gahan CG . Listeria monocytogenes as a vector for anti-cancer therapies. Curr Gene Ther 2010; 10: 46–55.

    CAS  PubMed  Google Scholar 

  38. Cronin M, Morrissey D, Rajendran S, El Mashad SM, van Sinderen D, O’Sullivan GC et al. Orally administered bifidobacteria as vehicles for delivery of agents to systemic tumors. Mol Ther 2010; 18: 1397–1407.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Prescher JA, Contag CH . Guided by the light: visualizing biomolecular processes in living animals with bioluminescence. Curr Opin Chem Biol 14: 80–89.

    CAS  PubMed  Google Scholar 

  40. Loening AM, Wu AM, Gambhir SS . Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Methods 2007; 4: 641–643.

    CAS  PubMed  Google Scholar 

  41. Levi J, De A, Cheng Z, Gambhir SS . Bisdeoxycoelenterazine derivatives for improvement of bioluminescence resonance energy transfer assays. J Am Chem Soc 2007; 129: 11900–11901.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nguyen VH, Kim HS, Ha JM, Hong Y, Choy HE, Min JJ . Genetically engineered Salmonella typhimurium as an imageable therapeutic probe for cancer. Cancer Res 2010; 70: 18–23.

    CAS  PubMed  Google Scholar 

  43. Gahan CG . The bacterial lux reporter system: applications in bacterial localisation studies. Curr Gene Ther 2012; 12: 12–19.

    CAS  PubMed  Google Scholar 

  44. Belas R, Mileham A, Cohn D, Hilman M, Simon M, Silverman M . Bacterial bioluminescence: isolation and expression of the luciferase genes from Vibrio harveyi. Science 1982; 218: 791–793.

    CAS  PubMed  Google Scholar 

  45. Riedel CU, Monk IR, Casey PG, Morrissey D, O’Sullivan GC, Tangney M et al. Improved luciferase tagging system for Listeria monocytogenes allows real-time monitoring in vivo and in vitro. Appl Environ Microbiol 2007; 73: 3091–3094.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Francis KP, Yu J, Bellinger-Kawahara C, Joh D, Hawkinson MJ, Xiao G et al. Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infect Immun 2001; 69: 3350–3358.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hardy J, Francis KP, DeBoer M, Chu P, Gibbs K, Contag CH . Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 2004; 303: 851–853.

    CAS  PubMed  Google Scholar 

  48. Wiles S, Clare S, Harker J, Huett A, Young D, Dougan G et al. Organ specificity, colonization and clearance dynamics in vivo following oral challenges with the murine pathogen Citrobacter rodentium. Cell Microbiol 2004; 6: 963–972.

    CAS  PubMed  Google Scholar 

  49. White AG, Fu N, Leevy WM, Lee J-J, Blasco MA, Smith BD . Optical imaging of bacterial infection in living mice using deep-red fluorescent squaraine rotaxane probes. Bioconjug Chem 2010; 21: 1297–1304.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nealson KH . Autoinduction of bacterial luciferase. Occurrence, mechanism and significance. Arch Microbiol 1977; 112: 73–79.

    CAS  PubMed  Google Scholar 

  51. Bhaumik S, Gambhir S . Optical imaging of Renilla luciferase reporter gene expression in living mice. Proceedings of the National Academy of Sciences 2002; 99: 377.

    CAS  Google Scholar 

  52. Yu YA, Shabahang S, Timiryasova TM, Zhang Q, Beltz R, Gentschev I et al. Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat Biotechnol 2004; 22: 313–320.

    CAS  PubMed  Google Scholar 

  53. Baban CK, Cronin MC, O’Hanlon DM, O’Sullivan GC, Tangney M . Bacteria as vectors for gene therapy of cancer. BioEngineered Bugs 2010; 1: 12.

    Google Scholar 

  54. Min JJ, Nguyen VH, Gambhir SS . Molecular imaging of biological gene delivery vehicles for targeted cancer therapy: beyond viral vectors. Nuclear Medicine and Molecular Imaging 2010; 44: 15–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Beckmann N, Kneuer R, Gremlich HU, Karmouty-Quintana H, Blé FX, Müller M . In vivo mouse imaging and spectroscopy in drug discovery. NMR Biomed 2007; 20: 154–185.

    PubMed  Google Scholar 

  56. Hilderbrand SA, Weissleder R . Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 2010; 14: 71–79.

    CAS  PubMed  Google Scholar 

  57. Bokobza L . Near infrared spectroscopy. J Near Infrared Spectrosc 1998; 6: 3–18.

    CAS  Google Scholar 

  58. Zhao M, Yang M, Baranov E, Wang X, Penman S, Moossa AR et al. Spatial-temporal imaging of bacterial infection and antibiotic response in intact animals. Proc Natl Acad Sci USA 2001; 98: 9814–9818.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mehta SR, Huang R, Yang M, Zhang XQ, Kolli B, Chang KP et al. Real-time in vivo green fluorescent protein imaging of a murine leishmaniasis model as a new tool for Leishmania vaccine and drug discovery. Clin Vaccine Immunol 2008; 15: 1764–1770.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kong Y, Subbian S, Cirillo SL, Cirillo JD . Application of optical imaging to study of extrapulmonary spread by tuberculosis. Tuberculosis (Edinb) 2009; 89 (Suppl 1): S15–S17.

    Google Scholar 

  61. Hoffman RM, Zhao M . Whole-body imaging of bacterial infection and antibiotic response. Nat Protoc 2006; 1: 2988–2994.

    CAS  PubMed  Google Scholar 

  62. Hayashi K, Zhao M, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K et al. Cancer metastasis directly eradicated by targeted therapy with a modified Salmonella typhimurium. J Cell Biochem 2009; 106: 992–998.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang YW, Yu YY, Shabahang SS, Wang GW, Szalay AS . Renilla luciferase-Aequorea GFP (Ruc-GFP) fusion protein, a novel dual reporter for real-time imaging of gene expression in cell cultures and in live animals. Mol Genet Genomics 2002; 268: 160–168.

    CAS  PubMed  Google Scholar 

  64. Snoeks TJ, Lowik CW, Kaijzel EL . ‘In vivo’ optical approaches to angiogenesis imaging. Angiogenesis 2010; 13: 135–147.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang Q, Yin L, Tan Y, Yuan Z, Jiang H . Quantitative bioluminescence tomography guided by diffuse optical tomography. Opt Express 2008; 16: 1481–1486.

    PubMed  Google Scholar 

  66. Leblond F, Davis SC, Valdes PA, Pogue BW . Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. J Photochem Photobiol B 2010; 98: 77–94.

    CAS  PubMed  Google Scholar 

  67. Tangney M, Francis KP . In vivo optical imaging in gene & cell therapy. Curr Gene Ther 2012; 12: 2–11.

    CAS  PubMed  Google Scholar 

  68. Min JJ, Kim HJ, Park JH, Moon S, Jeong JH, Hong YJ et al. Noninvasive real-time imaging of tumors and metastases using tumor-targeting light-emitting Escherichia coli. Mol Imaging Biol 2008; 10: 54–61.

    PubMed  Google Scholar 

  69. Min JJ, Nguyen VH, Kim HJ, Hong Y, Choy HE . Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nat Protoc 2008; 3: 629–636.

    CAS  PubMed  Google Scholar 

  70. Winson MK, Swift S, Hill PJ, Sims CM, Griesmayr G, Bycroft BW et al. Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett 1998; 163: 193–202.

    CAS  PubMed  Google Scholar 

  71. Riedel CU, Casey PG, Mulcahy H, O’Gara F, Gahan CG, Hill C . Construction of p16Slux, a novel vector for improved bioluminescent labeling of gram-negative bacteria. Appl Environ Microbiol 2007; 73: 7092–7095.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bron PA, Monk IR, Corr SC, Hill C, Gahan CG . Novel luciferase reporter system for in vitro and organ-specific monitoring of differential gene expression in Listeria monocytogenes. Appl Environ Microbiol 2006; 72: 2876–2884.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Steinhuber A, Landmann R, Goerke C, Wolz C, Fluckiger U . Bioluminescence imaging to study the promoter activity of hla of Staphylococcus aureus in vitro and in vivo. Int J Med Microbiol 2008; 298: 599–605.

    CAS  PubMed  Google Scholar 

  74. Andreu N, Zelmer A, Fletcher T, Elkington PT, Ward TH, Ripoll J et al. Optimisation of bioluminescent reporters for use with mycobacteria. PLoS One 2010; 5: e10777.

    PubMed  PubMed Central  Google Scholar 

  75. Rocchetta HL, Boylan CJ, Foley JW, Iversen PW, LeTourneau DL, McMillian CL et al. Validation of a noninvasive, real-time imaging technology using bioluminescent Escherichia coli in the neutropenic mouse thigh model of infection. Antimicrob Agents Chemother 2001; 45: 129–137.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bumann D . Examination of Salmonella gene expression in an infected mammalian host using the green fluorescent protein and two-colour flow cytometry. Mol Microbiol 2002; 43: 1269–1283.

    CAS  PubMed  Google Scholar 

  77. Sanz P, Teel LD, Alem F, Carvalho HM, Darnell SC, O’Brien AD . Detection of Bacillus anthracis spore germination in vivo by bioluminescence imaging. Infect Immun 2008; 76: 1036–1047.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Craney A, Hohenauer T, Xu Y, Navani NK, Li Y, Nodwell J . A synthetic luxCDABE gene cluster optimized for expression in high-GC bacteria. Nucleic Acids Res 2007; 35: e46.

    PubMed  PubMed Central  Google Scholar 

  79. Mesak LR, Yim G, Davies J . Improved lux reporters for use in Staphylococcus aureus. Plasmid 2009; 61: 182–187.

    CAS  PubMed  Google Scholar 

  80. Gupta RK, Patterson SS, Ripp S, Simpson ML, Sayler GS . Expression of the Photorhabdus luminescens lux genes (luxA, B, C, D, and E) in Saccharomyces cerevisiae. FEMS Yeast Res 2003; 4: 305–313.

    CAS  PubMed  Google Scholar 

  81. Unge A, Tombolini R, Molbak L, Jansson JK . Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system. Appl Environ Microbiol 1999; 65: 813–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Qazi SN, Rees CE, Mellits KH, Hill PJ . Development of gfp vectors for expression in listeria monocytogenes and other low G+C gram positive bacteria. Microb Ecol 2001; 41: 301–309.

    CAS  PubMed  Google Scholar 

  83. Tamagnini I, Guglielmetti S, Mora D, Parini C, Canzi E, Karp M . Generation and comparison of bioluminescent and fluorescent Bacillus licheniformis. Curr Microbiol 2008; 57: 245–250.

    CAS  PubMed  Google Scholar 

  84. Andreu N, Zelmer A, Wiles S . Noninvasive biophotonic imaging for studies of infectious disease. FEMS Microbiol Rev 2011; 35: 360–394.

    CAS  PubMed  Google Scholar 

  85. Leevy WM, Gammon ST, Jiang H, Johnson JR, Maxwell DJ, Jackson EN et al. Optical imaging of bacterial infection in living mice using a fluorescent near-infrared molecular probe. J Am Chem Soc 2006; 128: 16476–16477.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Leevy WM, Gammon ST, Johnson JR, Lampkins AJ, Jiang H, Marquez M et al. Noninvasive optical imaging of staphylococcus aureus bacterial infection in living mice using a Bis-dipicolylamine-Zinc(II) affinity group conjugated to a near-infrared fluorophore. Bioconjug Chem 2008; 19: 686–692.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ning X, Lee S, Wang Z, Kim D, Stubblefield B, Gilbert E et al. Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat Mater 2011; 10: 602–607.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Leevy WM, Lambert TN, Johnson JR, Morris J, Smith BD . Quantum dot probes for bacteria distinguish Escherichia coli mutants and permit in vivo imaging. Chem Commun (Camb) 2008; 9: 2331–2333.

    Google Scholar 

  89. Loening AM, Fenn TD, Wu AM, Gambhir SS . Consensus guided mutagenesis of Renilla luciferase yields enhanced stability and light output. Protein Eng Des Sel 2006; 19: 391–400.

    CAS  PubMed  Google Scholar 

  90. Tjuvajev JG, Hsia Chen S, Joshi A, Joshi R, Sheng Guo Z, Balatoni J et al. Imaging adenoviral-mediated herpes virus thymidine kinase gene transfer and expression in vivo. Cancer Res 1999; 59: 5186–5193.

    CAS  PubMed  Google Scholar 

  91. Bengel FM, Higuchi T, Javadi MS, Lautamäki R . Cardiac positron emission tomography. J Am Coll Cardiol 2009; 54: 1–15.

    PubMed  Google Scholar 

  92. Collins SA, Hiraoka K, Inagaki A, Kasahara N, Tangney M . PET imaging for gene & cell therapy. Curr Gene Ther 2012; 12: 20–32.

    CAS  PubMed  Google Scholar 

  93. Soghomonyan SA, Doubrovin M, Pike J, Luo X, Ittensohn M, Runyan JD et al. Positron emission tomography (PET) imaging of tumor-localized Salmonella expressing HSV1-TK. Cancer Gene Ther 2004; 12: 101–108.

    Google Scholar 

  94. Brader P, Stritzker J, Riedl CC, Zanzonico P, Cai S, Burnazi EM et al. Escherichia coli Nissle 1917 facilitates tumor detection by positron emission tomography and optical imaging. Clinical Cancer Research 2008; 14: 2295–2302.

    CAS  PubMed  Google Scholar 

  95. Bettegowda C, Foss CA, Cheong I, Wang Y, Diaz L, Agrawal N et al. Imaging bacterial infections with radiolabeled 1-(2′-deoxy-2′-fluoro-beta-D-arabinofuranosyl)-5-iodouracil. Proc Natl Acad Sci USA 2005; 102: 1145–1150.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Davis SL, Be NA, Lamichhane G, Nimmagadda S, Pomper MG, Bishai WR et al. Bacterial thymidine kinase as a non-invasive imaging reporter for Mycobacterium tuberculosis in live animals. PLoS One 2009; 4: e6297.

    PubMed  PubMed Central  Google Scholar 

  97. Kong Y, Shi Y, Chang M, Akin AR, Francis KP, Zhang N et al. Whole-body imaging of infection using bioluminescence. Curr Protoc Microbiol 2011; Chapter 2 Unit 2C 4.

  98. Yao H, So MK, Rao J . A bioluminogenic substrate for in vivo imaging of beta-lactamase activity. Angew Chem Int Ed Engl 2007; 46: 7031–7034.

    CAS  PubMed  Google Scholar 

  99. Bradford PA, Urban C, Jaiswal A, Mariano N, Rasmussen BA, Projan SJ et al. SHV-7, a novel cefotaxime-hydrolyzing beta-lactamase, identified in Escherichia coli isolates from hospitalized nursing home patients. Antimicrob Agents Chemother 1995; 39: 899–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Waerzeggers Y, Monfared P, Viel T, Winkeler A, Voges J, Jacobs AH . Methods to monitor gene therapy with molecular imaging. Methods 2009; 48: 146–160.

    CAS  PubMed  Google Scholar 

  101. Weissleder R, Mahmood U . Molecular imaging. Radiology 2001; 219: 316–333.

    CAS  PubMed  Google Scholar 

  102. Benoit MR, Mayer D, Barak Y, Chen IY, Hu W, Cheng Z et al. Visualizing implanted tumors in mice with magnetic resonance imaging using magnetotactic bacteria. Clin Cancer Res 2009; 15: 5170–5177.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gossuin Y, Muller RN, Gillis P . Relaxation induced by ferritin: a better understanding for an improved MRI iron quantification. NMR Biomed 2004; 17: 427–432.

    CAS  PubMed  Google Scholar 

  104. Hill PJ, Stritzker J, Scadeng M, Geissinger U, Haddad D, Basse-Lusebrink TC et al. Magnetic resonance imaging of tumors colonized with bacterial ferritin-expressing Escherichia coli. PLoS One 2011; 6: e25409.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Stegman LD, Rehemtulla A, Beattie B, Kievit E, Lawrence TS, Blasberg RG et al. Noninvasive quantitation of cytosine deaminase transgene expression in human tumor xenografts with in vivo magnetic resonance spectroscopy. Proc Natl Acad Sci USA 1999; 96: 9821–9826.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Fujimori M . Genetically engineered bifidobacterium as a drug delivery system for systemic therapy of metastatic breast cancer patients. Breast Cancer 2006; 13: 27–31.

    PubMed  Google Scholar 

  107. Nakamura T, Sasaki T, Fujimori M, Yazawa K, Kano Y, Amano J et al. Cloned cytosine deaminase gene expression of Bifidobacterium longum and application to enzyme/pro-drug therapy of hypoxic solid tumors. Biosci Biotechnol Biochem 2002; 66: 2362–2366.

    CAS  PubMed  Google Scholar 

  108. Sasaki T, Fujimori M, Hamaji Y, Hama Y, Ito K, Amano J et al. Genetically engineered Bifidobacterium longum for tumor-targeting enzyme-prodrug therapy of autochthonous mammary tumors in rats. Cancer Sci 2006; 97: 649–657.

    CAS  PubMed  Google Scholar 

  109. Hamaji Y, Fujimori M, Sasaki T, Matsuhashi H, Matsui-Seki K, Shimatani-Shibata Y et al. Strong enhancement of recombinant cytosine deaminase activity in Bifidobacterium longum for tumor-targeting enzyme/prodrug therapy. Biosci Biotechnol Biochem 2007; 71: 874–883.

    CAS  PubMed  Google Scholar 

  110. Hidaka A, Hamaji Y, Sasaki T, Taniguchi S, Fujimori M . Exogenous cytosine deaminase gene expression in Bifidobacterium breve I-53-8w for tumor-targeting enzyme/prodrug therapy. Biosci Biotechnol Biochem 2007; 71: 2921–2926.

    CAS  PubMed  Google Scholar 

  111. Shen Y, Nemunaitis J . Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer Gene Ther 2006; 13: 975–992.

    CAS  PubMed  Google Scholar 

  112. Pawelek JM, Low KB, Bermudes D . Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res 1997; 57: 4537–4544.

    CAS  PubMed  Google Scholar 

  113. Massoud TF, Singh A, Gambhir SS . Noninvasive molecular neuroimaging using reporter genes: part I, principles revisited. AJNR Am J Neuroradiol 2008; 29: 229–234.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge support relevant to this manuscript from the European Commission Seventh Framework Program (PIOF-GA-2009-255466), the Irish Health Research Board (HRA_POR/2010/138), (HRB_PhD/2007/4) and the Irish Cancer Society (CRF11CRO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Tangney.

Ethics declarations

Competing interests

KPF is an employee of Caliper-a PerkinElmer Company. This does not alter the authors’ adherence to all the CGT policies on sharing data and materials. The other authors declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cronin, M., Stanton, R., Francis, K. et al. Bacterial vectors for imaging and cancer gene therapy: a review. Cancer Gene Ther 19, 731–740 (2012). https://doi.org/10.1038/cgt.2012.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.59

Keywords

This article is cited by

Search

Quick links