Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Endostatin gene therapy stimulates upregulation of ICAM-1 and VCAM-1 in a metastatic renal cell carcinoma model

Abstract

One of the greatest challenges in urological oncology is renal cell carcinoma (RCC), which is the third leading cause of death in genitourinary cancers. RCCs are highly vascularized and respond positively to antiangiogenic therapy. Endostatin (ES) is a fragment of collagen XVIII that possesses antiangiogenic activity. In this study, we examined the potential of ES-based antiangiogenic therapy to activate tumor-associated endothelial cells in metastatic RCC (mRCC). Balb/c-bearing Renca cells were treated with NIH/3T3-LendSN or, as a control, with NIH/3T3-LXSN cells. The T-cell subsets and lymphocyte populations of tumors, mediastinal lymph nodes and the spleen were assessed by flow cytometry. The expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was assessed by real-time PCR, flow cytometry and immunohistochemistry analysis. ES gene therapy led to an increase in the percentage of infiltrating CD4-interferon (IFN)-γ cells (P<0.05), CD8-IFN-γ cells (P<0.01) and CD49b-tumor necrosis factor-α cells (P<0.01). In addition, ES therapy caused an increase at the mRNA level of ICAM-1 (1.4-fold; P<0.01) and VCAM-1 (1.5-fold) (control vs treated group; P<0.001). Through flow cytometry, we found a significant increase in the CD34/ICAM-1 cells (8.1-fold; P<0.001) and CD34/VCAM-1 cells (1.6-fold; P<0.05). ES gene therapy induced a significant increase in both T CD4 and CD8 cells in the lymph nodes and the spleen, suggesting that ES therapy may facilitate cell survival or clonal expansion. CD49b cells were also present in increased quantities in all of these organs. In this study, we demonstrate an antitumor inflammatory effect of ES in an mRCC model, and this effect is mediated by an increase in ICAM-1 and VCAM-1 expression in tumor-associated endothelial cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Sacco E, Pinto F, Totaro A, D'Addessi A, Racioppi M, Gulino G et al. Imaging of renal cell carcinoma: state of the art and recent advances. Urol Int 2011; 2: 125–139.

    Article  Google Scholar 

  2. Ruys AT, Tanis PJ, Iris ND, van Duijvendijk P, Verhoef C, Porte RJ et al. Surgical treatment of renal cell cancer liver metastases: a population-based study. Ann Surg Oncol 2011; 7: 1932–1938.

    Article  Google Scholar 

  3. Chintalapudi MR, Markiewicz M, Kose N, Dammai V, Champion KJ, Hoda RS et al. Cyr61/CCN1 and CTGF/CCN2 mediate the pro-angiogenic activity of VHL mutant renal carcinoma cells. Carcinogenesis 2008; 4: 696–703.

    Article  Google Scholar 

  4. Finley DS, Pantuck AJ, Belldegrun AS . Tumor biology and prognostic factors in renal cell carcinoma. Oncologist 2011; 2: 4–13.

    Article  Google Scholar 

  5. Jacobsen J, Rasmuson T, Grankvist K, Ljungberg B . Vascular endothelial growth factor as prognostic factor in renal cell carcinoma. J Urol 2000; 1: 343–347.

    Article  Google Scholar 

  6. van der Veldt AA, Meijerink MR, van den Eertwegh AJ, Boven E . Targeted therapies in renal cell cancer: recent developments in imaging. Target Oncol 2010; 12: 95–112.

    Article  Google Scholar 

  7. Atkins MB . Interleukin-2: clinical applications. Semin Oncol 2002; 7: 12–17.

    Article  Google Scholar 

  8. Paule B, Bastien L, Deslandes E, Cussenot O, Podgorniak MP, Allory Y et al. Soluble isoforms of vascular endothelial growth factor are predictors of response to sunitinib in metastatic renal cell carcinomas. PLoS One 2010; 5: e10715.

    Article  Google Scholar 

  9. Chowdhury S, Larkin JM, Gore ME . Recent advances in the treatment of renal cell carcinoma and the role of targeted therapies. Eur J Cancer 2008; 15: 2152–2161.

    Article  Google Scholar 

  10. Di Lorenzo G, Autorino R, Sternberg CN . Metastatic renal cell carcinoma: recent advances in the targeted therapy era. Eur Urol 2009; 6: 959–971.

    Article  Google Scholar 

  11. Attig S, Hennenlotter J, Pawelec G, Klein G, Koch SD, Pircher H et al. Simultaneous infiltration of polyfunctional effector and suppressor T cells into renal cell carcinomas. Cancer Res 2009; 69: 8412–8419.

    Article  CAS  Google Scholar 

  12. Sun M, Shariat SF, Cheng C, Ficarra V, Murai M, Oudard S et al. Prognostic factors and predictive models in renal cell carcinoma: a contemporary review. Eur Urol 2011; 60: 644–661.

    Article  Google Scholar 

  13. Kopecký O, Lukešová Š, Vroblová V, Vokurková D, Morávek P, Šafránek et al. Phenotype analysis of tumor-infiltrating lymphocytes and lymphocytes in peripheral blood in patients with renal cell carcinoma. ACTA MEDICA (Hradec Králové) 2007; 50: 207–212.

    Article  Google Scholar 

  14. Simonson WTN, Allison KH . Tumour-infiltrating lymphocytes in cancer: implications for the diagnostic pathologist. Diagn Histopathol 2010; 17: 80–90.

    Article  Google Scholar 

  15. Kondo T, Nakazawa H, Ito F, Hashimoto Y, OsakaY, Futatsuyama K et al. Favorable prognosis of renal cell carcinoma with increased expression of chemokines associated with a Th1-type immune response. Cancer Sci 2006; 97: 780–786.

    Article  CAS  Google Scholar 

  16. Rayman P, Wesa AK, Richmond AL, Das T, Biswas K, Raval G et al. Effect of renal cell carcinomas on the development of type 1 T-cell responses. Clin Cancer Res 2004; 10: 6360s–6366s.

    Article  CAS  Google Scholar 

  17. Kirkwood JM, Tarhini AA . Biomarkers of therapeutic response in melanoma and renal cell carcinoma: potential inroads to improved immunotherapy. J Clin Oncol 2009; 27: 2583–2585.

    Article  CAS  Google Scholar 

  18. Griffioen AW, Tromp SC, Hillen HF . Angiogenesis modulates the tumour immune response. Int J Exp Pathol 1998; 6: 363–368.

    Google Scholar 

  19. Sumpio BE, Riley JT, Dardik A . Cells in focus: endothelial cell. Int J Biochem Cell Biol 2002; 12: 1508–1512.

    Article  Google Scholar 

  20. Limaye V, Vadas M . The vascular endothelium: structure and function. In: Fitridge R, Thompson M (eds). Mechanisms of Vascular Disease: A Textbook for Vascular Surgeons. 1st edn. Cambridge University Press: New York, 2007, pp 1–10.

    Google Scholar 

  21. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 2011; 3: 1071–1121.

    Article  Google Scholar 

  22. Chouaib S, Kieda C, Benlalam H, Noman MZ, Mami-Chouaib F, Rüegg C . Endothelial cells as key determinants of the tumor microenvironment: interaction with tumor cells, extracellular matrix and immune killer cells. Crit Rev Immunol 2010; 6: 529–545.

    Article  Google Scholar 

  23. Hellebrekers DM, Castermans K, Viré E, Dings RP, Hoebers NT, Mayo KH et al. Epigenetic regulation of tumor endothelial cell anergy: silencing of intercellular adhesion molecule-1 by histone modifications. Cancer Res 2006; 22: 10770–10777.

    Article  Google Scholar 

  24. Dirkx AE, Oude Egbrink MG, Castermans K, van der Schaft DW, Thijssen VL, Dings RP et al. Anti-angiogenesis therapy can overcome endothelial cell anergy and promote leukocyte-endothelium interactions and infiltration in tumors. FASEB J 2006; 6: 621–630.

    Article  Google Scholar 

  25. Ferreras M, Felbor U, Lenhard T, Olsen BR, Delaissé J . Generation and degradation of human endostatin proteins by various proteinases. FEBS Lett 2000; 3: 247–251.

    Article  Google Scholar 

  26. Cichy MC, Rocha FG, Tristão VR, Pessoa EA, Cenedeze MA, Nürmberg Jr R et al. Collagen XVIII/endostatin expression in experimental endotoxemic acute renal failure. Braz J Med Biol Res 2009; 12: 1150–1155.

    Article  Google Scholar 

  27. Yu Y, Moulton KS, Khan MK, Vineberg S, Boye E, Davis VM et al. E-selectin is required for the antiangiogenic activity of endostatin. Proc Natl Acad Sci USA 2004; 101: 8005–8010.

    Article  CAS  Google Scholar 

  28. Xie L, Duncan MB, Pahler J, Sugimoto H, Martino M, Lively J et al. Counterbalancing angiogenic regulatory factors control the rate of cancer progression and survival in a stage-specific manner. Proc Natl Acad Sci USA 2011; 24: 9939–9944.

    Article  Google Scholar 

  29. Coutinho EL, Andrade LN, Chammas R, Morganti L, Schor N, Bellini MH . Anti-tumor vector of endostatin mediated by retroviral gene transfer in mice bearing renal cell carcinoma. FASEB J 2007; 12: 3153–3161.

    Article  Google Scholar 

  30. Rocha FG, Chaves KC, Chammas R, Peron JP, Rizzo LV, Schor N et al. Endostatin gene therapy enhances the efficacy of IL-2 in suppressing metastatic renal cell carcinoma in mice. Cancer Immunol Immunother 2010; 9: 1357–1365.

    Article  Google Scholar 

  31. de Goés Rocha FG, Chaves KC, Gomes CZ, Campanharo CB, Courrol LC, Schor N et al. Erythrocyte protoporphyrin fluorescence as a biomarker for monitoring antiangiogenic cancer therapy. J Fluoresc 2010; 6: 1225–1231.

    Article  Google Scholar 

  32. Rocha FG, Calvo FB, Chaves KC, Peron JP, Marques RF, de Borba TR . Endostatin- and interleukin-2-expressing retroviral bicistronic vector for gene therapy of metastatic renal cell carcinoma. J Gene Med 2011; 3: 148–157.

    Article  Google Scholar 

  33. van Beijnum JR, Rousch M, Castermans K, van der Linden E, Griffioen AW . Isolation of endothelial cells from fresh tissues. Nat Protoc 2008; 6: 1085–1091.

    Article  Google Scholar 

  34. Fridman WH, Pagès F, Sautès-Fridman C, Galons J . The immune contexture in human tumours: impact on clinical outcome. Nat Rev 2012; 12: 298–306.

    Article  CAS  Google Scholar 

  35. Sherief HM, Low SH, Miura M, Kudo N, Novick AC, Weimbs T . Matrix metalloproteinase activity in urine of patients with renal cell carcinoma leads to degradation of extracellular matrix proteins: possible use as screening assay. J Urol 2003; 169: 1530–1534.

    Article  CAS  Google Scholar 

  36. Dirkx AE, Oude Egbrink MG, Kuijpers MJ, van der Niet ST, Heijnen VV, Bouma-ter Steege JC et al. Tumor angiogenesis modulates leukocyte-vessel wall interactions in vivo by reducing endothelial adhesion molecule expression. Cancer Res 2003; 9: 2322–2329.

    Google Scholar 

  37. Blaheta RA, Powerski M, Hudak L, Juengel E, Jonas D, von Knethen A et al. Tumor-endothelium cross talk blocks recruitment of neutrophils to endothelial cells: a novel mechanism of endothelial cell anergy. Neoplasia 2009; 10: 1054–1063.

    Article  Google Scholar 

  38. Tanabe K, Campbell SC, Alexander JP, Steinbach F, Edinger MG, Tubbs RR et al. Molecular regulation of intercellular adhesion molecule 1 (ICAM-1) expression in renal cell carcinoma. Urol Res 1997; 4: 231–238.

    Article  Google Scholar 

  39. Shioi K, Komiya A, Hattori K, Huang Y, Sano F, Murakami T et al. Vascular cell adhesion molecule 1 predicts cancer-free survival in clear cell renal carcinoma patients. Clin Cancer Res 2006; 24: 7339–7346.

    Article  Google Scholar 

  40. White UA, Stephens JM . The gp130 receptor cytokine family: regulators of adipocyte development and function. Curr Pharm Des 2011; 4: 340–346.

    Article  Google Scholar 

  41. Linker RA, Luhder F, Kallen KJ, Lee DH, Engelhardt B, Rose-John S et al. IL-6 transsignalling modulates the early effector phase of EAE and targets the blood-brain barrier. J Neuroimmunol 2008; 1–2: 64–72.

    Article  Google Scholar 

  42. Hashizume M, Mihara M . The roles of interleukin-6 in the pathogenesis of rheumatoid arthritis. Arthritis 2011; 2011: 765624.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by FAPESP (process: 2009/54253-6 and 2009/12518-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M H Bellini.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaves, K., Peron, J., Chammas, R. et al. Endostatin gene therapy stimulates upregulation of ICAM-1 and VCAM-1 in a metastatic renal cell carcinoma model. Cancer Gene Ther 19, 558–565 (2012). https://doi.org/10.1038/cgt.2012.32

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.32

Keywords

This article is cited by

Search

Quick links