Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Treatment with targeted vesicular stomatitis virus generates therapeutic multifunctional anti-tumor memory CD4 T cells

Abstract

A generally applicable, easy-to-use method of focusing a patient's immune system to eradicate or prevent cancer has been elusive. We are attempting to develop a targeted virus to accomplish these aims. We previously created a recombinant replicating vesicular stomatitis virus (VSV) that preferentially infected Her2/neu expressing breast cancer cells and showed therapeutic efficacy in an implanted Balb/c mouse tumor model. The current work shows that this therapy generated therapeutic anti-tumor CD4 T cells against multiple tumor antigens. CD4 T cells transferred directly from cured donor mice could eradicate established tumors in host mice. T cells were transferred directly from donor mice and were not stimulated ex vivo. Both tumors that expressed Her2/neu and those that did not were cured by transferred T cells. Analysis of cytokines secreted by anti-tumor memory CD4 T cells displayed a multifunctional pattern with high levels of interferon-γ, interleukin (IL)-4 and IL-17. Anti-tumor memory CD4 T cells traveled to the mesenteric lymph nodes and were activated there. Treatment with targeted recombinant replicating VSV is a potent immune adjuvant that generates therapeutic, multifunctional anti-tumor memory CD4 T cells that recognize multiple tumor antigens. Immunity elicited by viral therapy is independent of host major histocompatibility complex or knowledge of tumor antigens. Virus-induced tumor immunity could have great benefit in the prevention and treatment of tumor metastases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wei MQ, Mengesha A, Good D, Anne J, Wei MQ, Mengesha A et al. Bacterial targeted tumour therapy-dawn of a new era. Cancer Lett 2008; 259: 16–27.

    Article  CAS  PubMed  Google Scholar 

  2. Finn OJ, Finn OJ . Cancer immunology. N Engl J Med 2008; 358: 2704–2715.

    Article  CAS  PubMed  Google Scholar 

  3. Rosenberg SA, Yang JC, Restifo NP . Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10: 909–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005; 23: 2346–2357.

    Article  CAS  PubMed  Google Scholar 

  5. Drake CG, Drake CG . Prostate cancer as a model for tumour immunotherapy. Nat Rev Immunol 2010; 10: 580–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Mattos CA, de Mattos CC, Rupprecht CE . Rhabdoviruses. In: Knipe D, Howley P (eds). Fundamental Virology, 4th edn. Lippincott Williams & Wilkins: Philadelphia, 2001, pp 1245–1277.

    Google Scholar 

  7. Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 2000; 6: 821–825.

    Article  CAS  PubMed  Google Scholar 

  8. Obuchi M, Fernandez M, Barber GN . Development of recombinant vesicular stomatitis viruses that exploit defects in host defense to augment specific oncolytic activity. J Virol 2003; 77: 8843–8856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fernandez M, Porosnicu M, Markovic D, Barber GN . Genetically engineered vesicular stomatitis virus in gene therapy: application for treatment of malignant disease. J Virol 2002; 76: 895–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Diaz RM, Galivo F, Kottke T, Wongthida P, Qiao J, Thompson J et al. Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus. Cancer Res 2007; 67: 2840–2848.

    Article  CAS  PubMed  Google Scholar 

  11. Porosnicu M, Mian A, Barber GN . The oncolytic effect of recombinant vesicular stomatitis virus is enhanced by expression of the fusion cytosine deaminase/uracil phosphoribosyltransferase suicide gene. Cancer Res 2003; 63: 8366–8376.

    CAS  PubMed  Google Scholar 

  12. Ebert O, Shinozaki K, Huang TG, Savontaus MJ, Garcia-Sastre A, Woo SL . Oncolytic vesicular stomatitis virus for treatment of orthotopic hepatocellular carcinoma in immune-competent rats. Cancer Res 2003; 63: 3605–3611.

    CAS  PubMed  Google Scholar 

  13. Bergman I, Whitaker-Dowling P, Gao Y, Griffin JA . Preferential targeting of vesicular stomatitis virus to breast cancer cells. Virology 2004; 330: 24–33.

    Article  CAS  PubMed  Google Scholar 

  14. Pilon SA, Kelly C, Wei WZ . Broadening of epitope recognition during immune rejection of ErbB-2-positive tumor prevents growth of ErbB-2-negative tumor. J Immunol 2003; 170: 1202–1208.

    Article  CAS  PubMed  Google Scholar 

  15. Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 2005; 11: 728–734.

    CAS  PubMed  Google Scholar 

  16. Bergman I, Griffin JA, Gao Y, Whitaker-Dowling P . Treatment of implanted mammary tumors with recombinant vesicular stomatitis virus targeted to Her2/neu. Int J Cancer 2007; 121: 425–430.

    Article  CAS  PubMed  Google Scholar 

  17. Lawson ND, Stillman EA, Whitt MA, Rose JK . Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci USA 1995; 92: 4477–4481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gao Y, Whitaker-Dowling P, Watkins SC, Griffin JA, Bergman I . Rapid adaptation of a recombinant vesicular stomatitis virus to a targeted cell line. J Virol 2006; 80: 8603–8612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei WZ, Shi WP, Galy A, Lichlyter D, Hernandez S, Groner B et al. Protection against mammary tumor growth by vaccination with full-length, modified human ErbB-2 DNA. Int J Cancer 1999; 81: 748–754.

    Article  CAS  PubMed  Google Scholar 

  20. Gao Y, Whitaker-Dowling P, Griffin JA, Barmada MA, Bergman I . Recombinant vesicular stomatitis virus targeted to Her2/neu combined with anti-CTLA4 antibody eliminates implanted mammary tumors. Cancer Gene Ther 2009; 16: 44–52.

    Article  CAS  PubMed  Google Scholar 

  21. Bracci L, Moschella F, Sestili P, La SV, Valentini M, Canini I et al. Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration. Clin Cancer Res 2007; 13: 644–653.

    Article  CAS  PubMed  Google Scholar 

  22. Taieb J, Chaput N, Schartz N, Roux S, Novault S, Menard C et al. Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. J Immunol 2006; 176: 2722–2729.

    Article  CAS  PubMed  Google Scholar 

  23. Viaud S, Flament C, Zoubir M, Pautier P, LeCesne A, Ribrag V et al. Cyclophosphamide induces differentiation of Th17 cells in cancer patients. Cancer Res 2011; 71: 661–665.

    Article  CAS  PubMed  Google Scholar 

  24. Liu Z, Noh HS, Chen J, Kim JH, Falo Jr LD, You Z et al. Potent tumor-specific protection ignited by adoptively transferred CD4+ T cells. J Immunol 2008; 181: 4363–4370.

    Article  CAS  PubMed  Google Scholar 

  25. Muranski P, Restifo NP, Muranski P, Restifo NP . Adoptive immunotherapy of cancer using CD4(+) T cells. Curr Opin Immunol 2009; 21: 200–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cerullo V, Pesonen S, Diaconu I, Escutenaire S, Arstila PT, Ugolini M et al. Oncolytic adenovirus coding for granulocyte macrophage colony-stimulating factor induces antitumoral immunity in cancer patients. Cancer Res 2010; 70: 4297–4309.

    Article  CAS  PubMed  Google Scholar 

  27. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783–792.

    Article  CAS  PubMed  Google Scholar 

  28. Palucka K, Ueno H, Banchereau J, Palucka K, Ueno H, Banchereau J . Recent developments in cancer vaccines. J Immunol 2011; 186: 1325–1331.

    Article  CAS  PubMed  Google Scholar 

  29. Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M et al. Overall survival analysis of a phase II randomized controlled trial of a poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 2010; 28: 1099–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Finkle D, Quan ZR, Asghari V, Kloss J, Ghaboosi N, Mai E et al. HER2-targeted therapy reduces incidence and progression of midlife mammary tumors in female murine mammary tumor virus huHER2-transgenic mice. Clin Cancer Res 2004; 10: 2499–2511.

    Article  CAS  PubMed  Google Scholar 

  31. Morgan RA, Dudley ME, Rosenberg SA, Morgan RA, Dudley ME, Rosenberg SA . Adoptive cell therapy: genetic modification to redirect effector cell specificity. Cancer J 2010; 16: 336–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosenberg SA, Dudley ME, Rosenberg SA, Dudley ME . Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol 2009; 21: 233–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cohen PA, Peng L, Plautz GE, Kim JA, Weng DE, Shu S et al. CD4+ T cells in adoptive immunotherapy and the indirect mechanism of tumor rejection. Crit Rev Immunol 2000; 20: 17–56.

    Article  CAS  PubMed  Google Scholar 

  34. Muranski P, Boni A, Antony PA, Cassard L, Irvine KR, Kaiser A et al. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 2008; 112: 362–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lundin KU, Hofgaard PO, Omholt H, Munthe LA, Corthay A, Bogen B et al. Therapeutic effect of idiotype-specific CD4+ T cells against B-cell lymphoma in the absence of anti-idiotypic antibodies. Blood 2003; 102: 605–612.

    Article  CAS  PubMed  Google Scholar 

  36. Nishimura T, Iwakabe K, Sekimoto M, Ohmi Y, Yahata T, Nakui M et al. Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med 1999; 190: 617–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kennedy R, Celis E, Kennedy R, Celis E . Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev 2008; 222: 129–144.

    Article  CAS  PubMed  Google Scholar 

  38. Liu Z, Tian S, Falo Jr LD, Sakaguchi S, You Z, Liu Z et al. Therapeutic immunity by adoptive tumor-primed CD4(+) T-cell transfer in combination with in vivo GITR ligation. Mol Ther 2009; 17: 1274–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Perez-Diez A, Joncker NT, Choi K, Chan WF, Anderson CC, Lantz O et al. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 2007; 109: 5346–5354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xie Y, Akpinarli A, Maris C, Hipkiss EL, Lane M, Kwon EK et al. Naive tumor-specific CD4(+) T cells differentiated in vivo eradicate established melanoma. J Exp Med 2010; 207: 651–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med 2008; 358: 2698–2703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells. Proc Natl Acad Sci USA 2005; 102: 9571–9576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang H, Bi XG, Yuan JY, Xu SL, Guo XL, Xiang J . Combined CD4+ Th1 effect and lymphotactin transgene expression enhance CD8+ Tc1 tumor localization and therapy. Gene Ther 2005; 12: 999–1010.

    Article  CAS  PubMed  Google Scholar 

  44. Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 2009; 31: 787–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kryczek I, Wei S, Szeliga W, Vatan L, Zou W, Kryczek I et al. Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood 2009; 114: 357–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McKinstry KK, Strutt TM, Swain SL, McKinstry KK, Strutt TM, Swain SL . The potential of CD4 T-cell memory. Immunology 2010; 130: 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Castellino F, Huang AY, tan-Bonnet G, Stoll S, Scheinecker C, Germain RN et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 2006; 440: 890–895.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by NIH Grant number RO1 CA104404. The contents of this study are solely the responsibility of the authors and do not necessarily represent the official views of the granting institution. We thank Drs Wei-Zen Wei, John K Rose, Irvin SY Chen, James P Allison and Genentech who very generously supplied materials as noted in the text. We thank Erich Scheller for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Bergman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Whitaker-Dowling, P., Griffin, J. et al. Treatment with targeted vesicular stomatitis virus generates therapeutic multifunctional anti-tumor memory CD4 T cells. Cancer Gene Ther 19, 282–291 (2012). https://doi.org/10.1038/cgt.2011.90

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.90

Keywords

This article is cited by

Search

Quick links