Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Deletion analysis of Ad5 E1a transcriptional control region: impact on tumor-selective expression of E1a and E1b

A Corrigendum to this article was published on 19 September 2011

Abstract

The regulatory sequences upstream of E1a, the first viral protein expressed upon infection of cells with adenovirus, have binding sites for multiple transcription factors including two binding sites for E2f and five binding sites for Pea3. We evaluated the impact of deletions, which remove one or more of these transcription factor-binding sites on the expression of E1a in a panel of tumor cells and non-transformed cells. We demonstrated that specific deletions in the E1a enhancer markedly reduced the expression of E1a in growth-arrested cells while having a minimal impact on the expression of E1a in a panel of tumor cells. In particular, deletion of a 50-bp region located from −305 to −255 upstream of the E1a initiation site resulted in marked reduction of E1a and E1b expression and cytolytic activity in growth-arrested cells, while retaining near wild-type of expression of E1a and E1b and cytolytic activity in tumor cells. This deletion removed two Pea3 sites and one E2f site. The characteristics of this vector, TAV-255, was compared with dl1520 (Onyx-015) and demonstrated restricted cytolytic activity in growth-arrested cells similar to dl1520 and superior cytolytic activity in a panel of tumor cell lines. In this current study, we demonstrate that TAV-255, an E1a enhancer deletion vector, possesses tumor selective expression of both E1a and E1b along with potent tumor-selective oncolytic activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kumar S, Gao L, Yeagy B, Reid T . Virus combinations and chemotherapy for the treatment of human cancers. Curr Opin Mol Ther 2008; 10: 371–379.

    PubMed  Google Scholar 

  2. Kirn D . Oncolytic virotherapy for cancer with the adenovirus dl1520 (ONYX-015): results of phase I and II trials. Expert Opin Biol Ther 2001; 1: 525–538.

    Article  CAS  PubMed  Google Scholar 

  3. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    Article  CAS  PubMed  Google Scholar 

  4. Harada JN, Berk AJ . p53-Independent and -dependent requirements for E1B-55 K in adenovirus type 5 replication. J Virol 1999; 73: 5333–5344.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Goodrum FD, Ornelles DA . p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J Virol 1998; 72: 9479–9490.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Babiss LE, Ginsberg HS, Darnell Jr JE . Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport. Mol Cell Biol 1985; 5: 2552–2558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Leppard KN, Shenk T . The adenovirus E1B 55 kd protein influences mRNA transport via an intranuclear effect on RNA metabolism. Embo J 1989; 8: 2329–2336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. O'Shea CC, Soria C, Bagus B, McCormick F . Heat shock phenocopies E1B-55 K late functions and selectively sensitizes refractory tumor cells to ONYX-015 oncolytic viral therapy. Cancer Cell 2005; 8: 61–74.

    Article  CAS  PubMed  Google Scholar 

  9. Reid T, Galanis E, Abbruzzese J, Sze D, Andrews J, Romel L et al. Intra-arterial administration of a replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial. Gene Ther 2001; 8: 1618–1626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH . ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997; 3: 639–645.

    Article  CAS  PubMed  Google Scholar 

  11. Kirn D . Clinical research results with dl1520 (ONYX-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Ther 2001; 8: 89–98.

    Article  CAS  PubMed  Google Scholar 

  12. Nemunaitis J, Cunningham C, Buchanan A, Blackburn A, Edelman G, Maples P et al. Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Ther 2001; 8: 746–759.

    Article  CAS  PubMed  Google Scholar 

  13. Huang TG, Savontaus MJ, Shinozaki K, Sauter BV, Woo SL . Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene Ther 2003; 10: 1241–1247.

    Article  CAS  PubMed  Google Scholar 

  14. Wirth T, Zender L, Schulte B, Mundt B, Plentz R, Rudolph KL et al. A telomerase-dependent conditionally replicating adenovirus for selective treatment of cancer. Cancer Res 2003; 63: 3181–3188.

    CAS  PubMed  Google Scholar 

  15. Gu J, Andreeff M, Roth JA, Fang B . hTERT promoter induces tumor-specific Bax gene expression and cell killing in syngenic mouse tumor model and prevents systemic toxicity. Gene Ther 2002; 9: 30–37.

    Article  CAS  PubMed  Google Scholar 

  16. Johnson L, Shen A, Boyle L, Kunich J, Pandey K, Lemmon M et al. Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. Cancer Cell 2002; 1: 325–337.

    Article  CAS  PubMed  Google Scholar 

  17. Li X, Zhang YP, Kim HS, Bae KH, Stantz KM, Lee SJ et al. Gene therapy for prostate cancer by controlling adenovirus E1a and E4 gene expression with PSES enhancer. Cancer Res 2005; 65: 1941–1951.

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Chen Y, Dilley J, Arroyo T, Ko D, Working P et al. Carcinoembryonic antigen-producing cell-specific oncolytic adenovirus, OV798, for colorectal cancer therapy. Mol Cancer Ther 2003; 2: 1003–1009.

    CAS  PubMed  Google Scholar 

  19. Bruder JT, Hearing P . Cooperative binding of EF-1A to the E1A enhancer region mediates synergistic effects on E1A transcription during adenovirus infection. J Virol 1991; 65: 5084–5087.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. de Launoit Y, Chotteau-Lelievre A, Beaudoin C, Coutte L, Netzer S, Brenner C et al. The PEA3 group of ETS-related transcription factors. Role in breast cancer metastasis. Adv Exp Med Biol 2000; 480: 107–116.

    Article  CAS  PubMed  Google Scholar 

  21. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  22. Khuri FR, Nemunaitis J, Ganly I, Arseneau J, Tannock IF, Romel L et al. a controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000; 6: 879–885.

    Article  CAS  PubMed  Google Scholar 

  23. Nemunaitis J, Cunningham C, Tong AW, Post L, Netto G, Paulson AS et al. Pilot trial of intravenous infusion of a replication-selective adenovirus (ONYX-015) in combination with chemotherapy or IL-2 treatment in refractory cancer patients. Cancer Gene Ther 2003; 10: 341–352.

    Article  CAS  PubMed  Google Scholar 

  24. Nemunaitis J, Senzer N, Sarmiento S, Zhang YA, Arzaga R, Sands B et al. A phase I trial of intravenous infusion of ONYX-015 and enbrel in solid tumor patients. Cancer Gene Ther 2007; 14: 885–893.

    Article  CAS  PubMed  Google Scholar 

  25. Reid T, Galanis E, Abbruzzese J, Sze D, Wein LM, Andrews J et al. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res 2002; 62: 6070–6079.

    CAS  PubMed  Google Scholar 

  26. Reid TR, Freeman S, Post L, McCormick F, Sze DY . Effects of ONYX-015 among metastatic colorectal cancer patients that have failed prior treatment with 5-FU/leucovorin. Cancer Gene Ther 2005; 12: 673–681.

    Article  CAS  PubMed  Google Scholar 

  27. Hearing P, Shenk T . The adenovirus type 5 E1A transcriptional control region contains a duplicated enhancer element. Cell 1983; 33: 695–703.

    Article  CAS  PubMed  Google Scholar 

  28. Johnson DG, Schneider-Broussard R . Role of E2F in cell cycle control and cancer. Front Biosci 1998; 3: d447–d448.

    Article  CAS  PubMed  Google Scholar 

  29. Muller H, Helin K . The E2F transcription factors: key regulators of cell proliferation. Biochim Biophys Acta 2000; 1470: M1–12.

    CAS  PubMed  Google Scholar 

  30. Hakuma N, Kinoshita I, Shimizu Y, Yamazaki K, Yoshida K, Nishimura M et al. E1AF/PEA3 activates the Rho/Rho-associated kinase pathway to increase the malignancy potential of non-small-cell lung cancer cells. Cancer Res 2005; 65: 10776–10782.

    Article  CAS  PubMed  Google Scholar 

  31. Boedefeld II WM, Soong R, Weiss H, Diasio RB, Urist MM, Bland KI et al. E1A-F is overexpressed early in human colorectal neoplasia and associated with cyclooxygenase-2 and matrix metalloproteinase-7. Mol Carcinog 2005; 43: 13–17.

    Article  CAS  PubMed  Google Scholar 

  32. Cowden Dahl KD, Zeineldin R, Hudson LG . PEA3 is necessary for optimal epidermal growth factor receptor-stimulated matrix metalloproteinase expression and invasion of ovarian tumor cells. Mol Cancer Res 2007; 5: 413–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu L, Rosser DS, Schmidt MC, Berk A . A TATA box implicated in E1A transcriptional activation of a simple adenovirus 2 promoter. Nature 1987; 326: 512–515.

    Article  CAS  PubMed  Google Scholar 

  34. Montell C, Fisher EF, Caruthers MH, Berk AJ . Control of adenovirus E1B mRNA synthesis by a shift in the activities of RNA splice sites. Mol Cell Biol 1984; 4: 966–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Maxfield LF, Spector DJ . Readthrough activation of early adenovirus E1b gene transcription. J Virol 1997; 71: 8321–8329.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Falck-Pedersen E, Logan J, Shenk T, Darnell Jr JE . Transcription termination within the E1A gene of adenovirus induced by insertion of the mouse beta-major globin terminator element. Cell 1985; 40: 897–905.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Shakeela, Marta and Yoel for important discussions and review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Hedjran.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedjran, F., Shantanu, K. & Tony, R. Deletion analysis of Ad5 E1a transcriptional control region: impact on tumor-selective expression of E1a and E1b. Cancer Gene Ther 18, 717–723 (2011). https://doi.org/10.1038/cgt.2011.41

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.41

Keywords

This article is cited by

Search

Quick links