Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adjuvant effect of HER-2/neu-specific adenoviral vector stimulating CD8+ T and natural killer cell responses on anti-HER-2/neu antibody therapy for well-established breast tumors in HER-2/neu transgenic mice

Abstract

Approximately one third of patients with advanced human epidermal growth factor receptor 2 (HER-2)/neu-positive breast cancer respond to trastuzumab monotherapy, a humanized anti-HER-2/neu antibody. However, de novo and acquired antibody resistance is one of the major limitations of trastuzumab therapy warranting the search for other therapeutic strategies. One of the most remarkable features of adenovirus (AdV)-based vaccine is its ability to induce exceptionally high and sustained frequencies of transgene product-specific CD8+ T-cell responses. In this study, we constructed two recombinant AdVs (AdVOVA and AdVHER-2) expressing ovalbumin (OVA) and HER-2/neu, and assessed AdV-induced antigen-specific cellular immune responses and preventive/therapeutic antitumor immunity. We demonstrate that AdVOVA stimulates efficient OVA-specific CD8+ cytotoxic T lymphocyte (CTL) and natural killer responses, leading to preventive long-term immunity against OVA-expressing BL6-10ova melanoma in wild-type C56BL/6 mice. We further demonstrate that AdVHER-2 stimulates HER-2/neu-specific CD8+ CTL responses, leading to a significant reduction in breast carcinogenesis in transgenic FVBneuN mice (P<0.05), but has little therapeutic effect on pre-existing Tg1-1 tumor even at early stage (15 mm3). In contrast, the anti-HER-2/neu antibody therapy is capable of completely inhibiting Tg1-1 tumor growth at early stage, but fails to eradicate well-established Tg1-1 breast tumor (100 mm3). Interestingly, a combinatorial immunotherapy of anti-HER-2/neu antibody with AdVHER-2 vaccine was capable of curing 4 of 10 studied mice bearing well-established Tg1-1 breast tumors and significantly delaying in death of the remaining six tumor-bearing mice (P<0.05). Taken together, our results suggest an adjuvant effect of AdVHER-2 on anti-HER-2/neu antibody therapy for well-established breast tumor in transgenic FVBneuN mice, and this combinatorial immunotherapy of trastuzumab with AdVHER-2 vaccine may be used as a new therapeutic strategy for treatment of advanced HER-2/neu-positive breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Schechter AL, Hung MC, Vaidyanathan L, Weinberg RA, Yang-Feng TL, Francke U et al. The neu gene: an erbB-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science 1985; 229: 976–978.

    CAS  PubMed  Google Scholar 

  2. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–712.

    CAS  PubMed  Google Scholar 

  3. Bargmann CI, Hung MC, Weinberg RA . The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature 1986; 319: 226–230.

    CAS  PubMed  Google Scholar 

  4. Pupa SM, Menard S, Andreola S, Colnaghi MI . Antibody response against the c-erbB-2 oncoprotein in breast carcinoma patients. Cancer Res 1993; 53: 5864–5866.

    CAS  PubMed  Google Scholar 

  5. Disis ML, Knutson KL, Schiffman K, Rinn K, McNeel DG . Pre-existent immunity to the HER-2/neu oncogenic protein in patients with HER-2/neu overexpressing breast and ovarian cancer. Breast Cancer Res Treat 2000; 62: 245–252.

    CAS  PubMed  Google Scholar 

  6. Peoples GE, Goedegebuure PS, Smith R, Linehan DC, Yoshino I, Eberlein TJ . Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc Natl Acad Sci USA 1995; 92: 432–436.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.

    CAS  PubMed  Google Scholar 

  8. Gonzalez-Angulo AM, Hortobagyi GN, Esteva FJ . Adjuvant therapy with trastuzumab for HER-2/neu-positive breast cancer. Oncologist 2006; 11: 857–867.

    CAS  PubMed  Google Scholar 

  9. Nahta R, Esteva FJ . Herceptin: mechanisms of action and resistance. Cancer Lett 2006; 232: 123–138.

    CAS  PubMed  Google Scholar 

  10. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 2007; 12: 395–402.

    CAS  PubMed  Google Scholar 

  11. Nahta R, Esteva FJ . HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res 2006; 8: 215.

    PubMed  PubMed Central  Google Scholar 

  12. Ho WY, Yee C, Greenberg PD . Adoptive therapy with CD8(+) T cells: it may get by with a little help from its friends. J Clin Invest 2002; 110: 1415–1417.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lara-Tejero M, Pamer EG . T cell responses to Listeria monocytogenes. Curr Opin Microbiol 2004; 7: 45–50.

    CAS  PubMed  Google Scholar 

  14. Wherry EJ, Ahmed R . Memory CD8 T-cell differentiation during viral infection. J Virol 2004; 78: 5535–5545.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Berzofsky JA, Terabe M, Oh S, Belyakov IM, Ahlers JD, Janik JE et al. Progress on new vaccine strategies for the immunotherapy and prevention of cancer. J Clin Invest 2004; 113: 1515–1525.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Serbina N, Pamer EG . Quantitative studies of CD8+ T-cell responses during microbial infection. Curr Opin Immunol 2003; 15: 436–442.

    CAS  PubMed  Google Scholar 

  17. Bonnet MC, Tartaglia J, Verdier F, Kourilsky P, Lindberg A, Klein M et al. Recombinant viruses as a tool for therapeutic vaccination against human cancers. Immunol Lett 2000; 74: 11–25.

    CAS  PubMed  Google Scholar 

  18. Harrop R, John J, Carroll MW . Recombinant viral vectors: cancer vaccines. Adv Drug Deliv Rev 2006; 58: 931–947.

    CAS  PubMed  Google Scholar 

  19. Muruve DA, Cotter MJ, Zaiss AK, White LR, Liu Q, Chan T et al. Helper-dependent adenovirus vectors elicit intact innate but attenuated adaptive host immune responses in vivo. J Virol 2004; 78: 5966–5972.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ng P, Parks RJ, Cummings DT, Evelegh CM, Sankar U, Graham FL . A high-efficiency Cre/loxP-based system for construction of adenoviral vectors. Hum Gene Ther 1999; 10: 2667–2672.

    CAS  PubMed  Google Scholar 

  21. Sullivan NJ, Geisbert TW, Geisbert JB, Xu L, Yang ZY, Roederer M et al. Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature 2003; 424: 681–684.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao W, Tamin A, Soloff A, D’Aiuto L, Nwanegbo E, Robbins PD et al. Effects of a SARS-associated coronavirus vaccine in monkeys. Lancet 2003; 362: 1895–1896.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sumida SM, Truitt DM, Kishko MG, Arthur JC, Jackson SS, Gorgone DA et al. Neutralizing antibodies and CD8+ T lymphocytes both contribute to immunity to adenovirus serotype 5 vaccine vectors. J Virol 2004; 78: 2666–2673.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Santra S, Seaman MS, Xu L, Barouch DH, Lord CI, Lifton MA et al. Replication-defective adenovirus serotype 5 vectors elicit durable cellular and humoral immune responses in nonhuman primates. J Virol 2005; 79: 6516–6522.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang TC, Dayball K, Wan YH, Bramson J . Detailed analysis of the CD8+ T-cell response following adenovirus vaccination. J Virol 2003; 77: 13407–13411.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Millar J, Dissanayake D, Yang TC, Grinshtein N, Evelegh C, Wan Y et al. The magnitude of the CD8+ T cell response produced by recombinant virus vectors is a function of both the antigen and the vector. Cell Immunol 2007; 250: 55–67.

    CAS  PubMed  Google Scholar 

  27. Tatsis N, Fitzgerald JC, Reyes-Sandoval A, Harris-McCoy KC, Hensley SE, Zhou D et al. Adenoviral vectors persist in vivo and maintain activated CD8+ T cells: implications for their use as vaccines. Blood 2007; 110: 1916–1923.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang TC, Millar J, Groves T, Grinshtein N, Parsons R, Takenaka S et al. The CD8+ T cell population elicited by recombinant adenovirus displays a novel partially exhausted phenotype associated with prolonged antigen presentation that nonetheless provides long-term immunity. J Immunol 2006; 176: 200–210.

    CAS  PubMed  Google Scholar 

  29. Overwijk WW, Lee DS, Surman DR, Irvine KR, Touloukian CE, Chan CC et al. Vaccination with a recombinant vaccinia virus encoding a ‘self’ antigen induces autoimmune vitiligo and tumor cell destruction in mice: requirement for CD4(+) T lymphocytes. Proc Natl Acad Sci USA 1999; 96: 2982–2987.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lane C, Leitch J, Tan X, Hadjati J, Bramson JL, Wan Y . Vaccination-induced autoimmune vitiligo is a consequence of secondary trauma to the skin. Cancer Res 2004; 64: 1509–1514.

    CAS  PubMed  Google Scholar 

  31. Leitch J, Fraser K, Lane C, Putzu K, Adema GJ, Zhang QJ et al. CTL-dependent and -independent antitumor immunity is determined by the tumor not the vaccine. J Immunol 2004; 172: 5200–5205.

    CAS  PubMed  Google Scholar 

  32. Kianizad K, Marshall LA, Grinshtein N, Bernard D, Margl R, Cheng S et al. Elevated frequencies of self-reactive CD8+ T cells following immunization with a xenoantigen are due to the presence of a heteroclitic CD4+ T-cell helper epitope. Cancer Res 2007; 67: 6459–6467.

    CAS  PubMed  Google Scholar 

  33. Grinshtein N, Bridle B, Wan Y, Bramson JL . Neoadjuvant vaccination provides superior protection against tumor relapse following surgery compared with adjuvant vaccination. Cancer Res 2009; 69: 3979–3985.

    CAS  PubMed  Google Scholar 

  34. Gallo P, Dharmapuri S, Nuzzo M, Maldini D, Iezzi M, Cavallo F et al. Xenogeneic immunization in mice using HER2 DNA delivered by an adenoviral vector. Int J Cancer 2005; 113: 67–77.

    CAS  PubMed  Google Scholar 

  35. Park JM, Terabe M, Sakai Y, Munasinghe J, Forni G, Morris JC et al. Early role of CD4+ Th1 cells and antibodies in HER-2 adenovirus vaccine protection against autochthonous mammary carcinomas. J Immunol 2005; 174: 4228–4236.

    CAS  PubMed  Google Scholar 

  36. Wang X, Wang JP, Rao XM, Price JE, Zhou HS, Lachman LB . Prime-boost vaccination with plasmid and adenovirus gene vaccines control HER2/neu+ metastatic breast cancer in mice. Breast Cancer Res 2005; 7: R580–R588.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Park JM, Terabe M, Steel JC, Forni G, Sakai Y, Morris JC et al. Therapy of advanced established murine breast cancer with a recombinant adenoviral ErbB-2/neu vaccine. Cancer Res 2008; 68: 1979–1987.

    CAS  PubMed  Google Scholar 

  38. Drebin JA, Link VC, Greene MI . Monoclonal antibodies reactive with distinct domains of the neu oncogene-encoded p185 molecule exert synergistic anti-tumor effects in vivo. Oncogene 1988; 2: 273–277.

    CAS  PubMed  Google Scholar 

  39. Umeshappa CS, Huang H, Xie Y, Wei Y, Mulligan SJ, Deng Y et al. CD4+ Th-APC with acquired peptide/MHC class I and II complexes stimulate type 1 helper CD4+ and central memory CD8+ T cell responses. J Immunol 2009; 182: 193–206.

    CAS  PubMed  Google Scholar 

  40. Sas S, Chan T, Sami A, El-Gayed A, Xiang J . Vaccination of fiber-modified adenovirus-transfected dendritic cells to express HER-2/neu stimulates efficient HER-2/neu-specific humoral and CTL responses and reduces breast carcinogenesis in transgenic mice. Cancer Gene Ther 2008; 15: 655–666.

    CAS  PubMed  Google Scholar 

  41. Wright P, Zheng C, Moyana T, Xiang J . Intratumoral vaccination of adenoviruses expressing fusion protein RM4/tumor necrosis factor (TNF)-alpha induces significant tumor regression. Cancer Gene Ther 1998; 5: 371–379.

    CAS  PubMed  Google Scholar 

  42. Carlsson G, Gullberg B, Hafstrom L . Estimation of liver tumor volume using different formulas—an experimental study in rats. J Cancer Res Clin Oncol 1983; 105: 20–23.

    CAS  PubMed  Google Scholar 

  43. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783–792.

    Article  CAS  PubMed  Google Scholar 

  44. Miller F, Jones RF, Jacob J, Kong YC, Wei WZ . From breast cancer immunobiology to her-2 DNA vaccine and autoimmune sequelae. Breast Dis 2004; 20: 43–51.

    CAS  PubMed  Google Scholar 

  45. Reilly RT, Gottlieb MB, Ercolini AM, Machiels JP, Kane CE, Okoye FI et al. HER-2/neu is a tumor rejection target in tolerized HER-2/neu transgenic mice. Cancer Res 2000; 60: 3569–3576.

    CAS  PubMed  Google Scholar 

  46. Czerniecki BJ, Koski GK, Koldovsky U, Xu S, Cohen PA, Mick R et al. Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res 2007; 67: 1842–1852.

    CAS  PubMed  Google Scholar 

  47. Ambrosino E, Spadaro M, Iezzi M, Curcio C, Forni G, Musiani P et al. Immunosurveillance of Erbb2 carcinogenesis in transgenic mice is concealed by a dominant regulatory T-cell self-tolerance. Cancer Res 2006; 66: 7734–7740.

    CAS  PubMed  Google Scholar 

  48. Wall EM, Milne K, Martin ML, Watson PH, Theiss P, Nelson BH . Spontaneous mammary tumors differ widely in their inherent sensitivity to adoptively transferred T cells. Cancer Res 2007; 67: 6442–6450.

    CAS  PubMed  Google Scholar 

  49. Whittington PJ, Piechocki MP, Heng HH, Jacob JB, Jones RF, Back JB et al. DNA vaccination controls Her-2+ tumors that are refractory to targeted therapies. Cancer Res 2008; 68: 7502–7511.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Harwerth IM, Wels W, Schlegel J, Muller M, Hynes NE . Monoclonal antibodies directed to the erbB-2 receptor inhibit in vivo tumour cell growth. Br J Cancer 1993; 68: 1140–1145.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Knutson KL, Almand B, Dang Y, Disis ML . Neu antigen-negative variants can be generated after neu-specific antibody therapy in neu transgenic mice. Cancer Res 2004; 64: 1146–1151.

    CAS  PubMed  Google Scholar 

  52. Antonia S, Mule JJ, Weber JS . Current developments of immunotherapy in the clinic. Curr Opin Immunol 2004; 16: 130–136.

    CAS  PubMed  Google Scholar 

  53. Knutson KL, Disis ML . Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 2005; 54: 721–728.

    CAS  PubMed  Google Scholar 

  54. Hudziak RM, Lewis GD, Winget M, Fendly BM, Shepard HM, Ullrich A . p185HER2 monoclonal antibody has antiproliferative effects in vitro and sensitizes human breast tumor cells to tumor necrosis factor. Mol Cell Biol 1989; 9: 1165–1172.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nahta R, Esteva FJ . HER-2-targeted therapy: lessons learned and future directions. Clin Cancer Res 2003; 9: 5078–5084.

    CAS  PubMed  Google Scholar 

  56. Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J . Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 2001; 61: 4744–4749.

    CAS  PubMed  Google Scholar 

  57. Le XF, Claret FX, Lammayot A, Tian L, Deshpande D, LaPushin R et al. The role of cyclin-dependent kinase inhibitor p27Kip1 in anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition. J Biol Chem 2003; 278: 23441–23450.

    CAS  PubMed  Google Scholar 

  58. Jackson JG, St Clair P, Sliwkowski MX, Brattain MG . Blockade of epidermal growth factor- or heregulin-dependent ErbB2 activation with the anti-ErbB2 monoclonal antibody 2C4 has divergent downstream signaling and growth effects. Cancer Res 2004; 64: 2601–2609.

    CAS  PubMed  Google Scholar 

  59. Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL . Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 2002; 62: 4132–4141.

    CAS  PubMed  Google Scholar 

  60. Mohsin SK, Weiss HL, Gutierrez MC, Chamness GC, Schiff R, Digiovanna MP et al. Neoadjuvant trastuzumab induces apoptosis in primary breast cancers. J Clin Oncol 2005; 23: 2460–2468.

    CAS  PubMed  Google Scholar 

  61. Clynes RA, Towers TL, Presta LG, Ravetch JV . Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 2000; 6: 443–446.

    CAS  PubMed  Google Scholar 

  62. Gennari R, Menard S, Fagnoni F, Ponchio L, Scelsi M, Tagliabue E et al. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res 2004; 10: 5650–5655.

    CAS  PubMed  Google Scholar 

  63. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20: 719–726.

    CAS  PubMed  Google Scholar 

  64. Cobleigh MA, Vogel CL, Tripathy D, Robert NJ, Scholl S, Fehrenbacher L et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 1999; 17: 2639–2648.

    CAS  PubMed  Google Scholar 

  65. Baselga J, Gianni L, Geyer C, Perez EA, Riva A, Jackisch C . Future options with trastuzumab for primary systemic and adjuvant therapy. Semin Oncol 2004; 31: 51–57.

    CAS  PubMed  Google Scholar 

  66. Buzdar AU, Ibrahim NK, Francis D, Booser DJ, Thomas ES, Theriault RL et al. Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. J Clin Oncol 2005; 23: 3676–3685.

    CAS  PubMed  Google Scholar 

  67. Valabrega G, Montemurro F, Aglietta M . Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol 2007; 18: 977–984.

    CAS  PubMed  Google Scholar 

  68. Whenham N, D’Hondt V, Piccart MJ . HER2-positive breast cancer: from trastuzumab to innovatory anti-HER2 strategies. Clin Breast Cancer 2008; 8: 38–49.

    CAS  PubMed  Google Scholar 

  69. Bengala C, Zamagni C, Pedrazzoli P, Matteucci P, Ballestrero A, Da Prada G et al. Cardiac toxicity of trastuzumab in metastatic breast cancer patients previously treated with high-dose chemotherapy: a retrospective study. Br J Cancer 2006; 94: 1016–1020.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Disis ML, Bernhard H, Shiota FM, Hand SL, Gralow JR, Huseby ES et al. Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines. Blood 1996; 88: 202–210.

    CAS  PubMed  Google Scholar 

  71. Ladjemi MZ, Jacot W, Chardes T, Pelegrin A, Navarro-Teulon I . Anti-HER2 vaccines: new prospects for breast cancer therapy. Cancer Immunol Immunother 2010; 59: 1295–1312.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Baxevanis CN, Perez SA, Papamichail M . Combinatorial treatments including vaccines, chemotherapy and monoclonal antibodies for cancer therapy. Cancer Immunol Immunother 2009; 58: 317–324.

    PubMed  Google Scholar 

  73. Mittendorf EA, Storrer CE, Shriver CD, Ponniah S, Peoples GE . Investigating the combination of trastuzumab and HER2/neu peptide vaccines for the treatment of breast cancer. Ann Surg Oncol 2006; 13: 1085–1098.

    PubMed  Google Scholar 

  74. Disis ML, Wallace DR, Gooley TA, Dang Y, Slota M, Lu H et al. Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J Clin Oncol 2009; 27: 4685–4692.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Benavides LC, Gates JD, Carmichael MG, Patil R, Holmes JP, Hueman MT et al. The impact of HER2/neu expression level on response to the E75 vaccine: from U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clin Cancer Res 2009; 15: 2895–2904.

    CAS  PubMed  Google Scholar 

  76. Bruna-Romero O, Gonzalez-Aseguinolaza G, Hafalla JC, Tsuji M, Nussenzweig RS . Complete, long-lasting protection against malaria of mice primed and boosted with two distinct viral vectors expressing the same plasmodial antigen. Proc Natl Acad Sci USA 2001; 98: 11491–11496.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hassett DE, Slifka MK, Zhang J, Whitton JL . Direct ex vivo kinetic and phenotypic analyses of CD8(+) T-cell responses induced by DNA immunization. J Virol 2000; 74: 8286–8291.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Garnett CT, Erdman D, Xu W, Gooding LR . Prevalence and quantitation of species C adenovirus DNA in human mucosal lymphocytes. J Virol 2002; 76: 10608–10616.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Gu Z, Belzer SW, Gibson CS, Bankowski MJ, Hayden RT . Multiplexed, real-time PCR for quantitative detection of human adenovirus. J Clin Microbiol 2003; 41: 4636–4641.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Karimi K, Boudreau JE, Fraser K, Liu H, Delanghe J, Gauldie J et al. Enhanced antitumor immunity elicited by dendritic cell vaccines is a result of their ability to engage both CTL and IFN gamma-producing NK cells. Mol Ther 2008; 16: 411–418.

    CAS  PubMed  Google Scholar 

  81. Chan T, Sami A, El-Gayed A, Guo X, Xiang J . HER-2/neu-gene engineered dendritic cell vaccine stimulates stronger HER-2/neu-specific immune responses compared to DNA vaccination. Gene Ther 2006; 13: 1391–1402.

    CAS  PubMed  Google Scholar 

  82. Bocangel D, Zheng M, Mhashilkar A, Liu Y, Ramesh R, Hunt KK et al. Combinatorial synergy induced by adenoviral-mediated mda-7 and Herceptin in Her-2+ breast cancer cells. Cancer Gene Ther 2006; 13: 958–968.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a research grant (406991) from Canadian Breast Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Xiang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Xie, Y., Chan, T. et al. Adjuvant effect of HER-2/neu-specific adenoviral vector stimulating CD8+ T and natural killer cell responses on anti-HER-2/neu antibody therapy for well-established breast tumors in HER-2/neu transgenic mice. Cancer Gene Ther 18, 489–499 (2011). https://doi.org/10.1038/cgt.2011.18

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.18

Keywords

This article is cited by

Search

Quick links