Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting HSV-1 virions for specific binding to epidermal growth factor receptor-vIII-bearing tumor cells

Abstract

Oncolytic herpes simplex virus (HSV) vectors have been used in early phase human clinical trials as a therapy for recurrent malignant glioblastoma. This treatment proved safe but limited improvements in patient survival were observed. The potency of these vectors might be enhanced by targeting vector infectivity to tumor cells. Glioma tumors often express a mutant form (vIII) of the epidermal growth factor receptor (EGFR) resulting in the presence of a novel epitope on the cell surface. This epitope is specifically recognized by a single-chain antibody designated MR1-1. HSV-1 infection involves initial binding to heparan sulfate (HS) on the cell surface mediated primarily by the viral envelope, glycoprotein C (gC). Here we joined the MR1-1 single-chain antibody (scFv) to the gC sequence deleted for the HS-binding domain as a means of targeting viral attachment to EGFRvIII on glial tumor cells. Virions bearing MR1-1-modified gC had fivefold increased infectivity for EGFRvIII-bearing human glioma U87 cells compared to mutant receptor-deficient cells. Further, MR1-1/EGFRvIII-mediated infection was more efficient for EGFRvIII-positive cells than was wild-type virus for either positive or negative cells. Sustained infection of EGFRvIII+ glioma cells by MR1-1-modified gC-bearing oncolytic virus, as compared to wild-type gC oncolytic virus, was also shown in subcutaneous tumors in vivo using firefly luciferase as a reporter of infection. These data show that HSV tropism can be manipulated so that virions recognize a cell-specific binding site with increased infectivity for the target cell. The retargeting of HSV infection to tumor cells should enhance vector specificity, tumor cell killing and vector safety.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

EGFR:

epidermal growth factor receptor

Fluc:

firefly luciferase

gC:

glycoprotein

GFP:

green fluorescent protein

HS:

heparan sulfate

HSBD:

HS-binding domain

HSV:

herpes simplex virus

MOI:

multiplicity of infection

MR1:

antibody to mutant EGFRvIII

PBS:

phosphate-buffered saline

PFU:

plaque-forming unit

RFP:

red fluorescent protein

tu:

transducing unit

X-gal:

5-bromo-4-chloro-3-indolye-β-D-galactopyranoside

References

  1. Markert JM, Parker JN, Buchsbaum DJ, Grizzle WE, Gillespie GY, Whitley RJ . Oncolytic HSV-1 for the treatment of brain tumours. Herpes 2006; 13: 66–71.

    PubMed  Google Scholar 

  2. Fulci G, Chiocca EA . The status of gene therapy for brain tumors. Expert Opin Biol Ther 2007; 7: 197–203.

    Article  CAS  Google Scholar 

  3. Varghese S, Rabkin SD . Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther 2002; 9: 967–978.

    Article  CAS  Google Scholar 

  4. Lorimer IA, Keppler-Hafkemeyer A, Beers RA, Pegram CN, Bigner DD, Pastan I . Recombinant immunotoxins specific for a mutant epidermal growth factor receptor: targeting with a single chain antibody variable domain isolated by phage display. Proc Natl Acad Sci USA 1996; 93: 14815–14820.

    Article  CAS  Google Scholar 

  5. Smith KE, Janelixde S, Visse E, Badn W, Salford L, Siesjo P et al. Synergism between GM-CSF and IFN gamma: enhanced immunotherapy in mice with glioma. Int J Cancer 2007; 120: 75–80.

    Article  CAS  Google Scholar 

  6. Grandi P, Bein K, Hadjipanayis C, Wolfe D, Breakefield XO, Glorioso J . Application of HSV-1 vectors to the treatment of cancer. In: Harrington K, Pandha H, Vile R (eds). Viral Therapy of Cancer. John Wiley & Sons, London, 2008.

  7. MacKie RM, Stewart B, Brown SM . Intralesional injection of herpes simplex virus 1716 in metastatic melanoma. Lancet 2001; 357: 525–526.

    Article  CAS  Google Scholar 

  8. Rampling R, Cruickshank G, Papanastassiou V, Nicoll J, Hadley D, Brennan D et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Therapy 2000; 7: 859–866.

    Article  CAS  Google Scholar 

  9. Liu BL, Robinson M, Han ZQ, Branston RH, English C, Reay P et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Therapy 2003; 10: 292–303.

    Article  CAS  Google Scholar 

  10. Papanastassiou V, Rampling R, Fraser M, Petty R, Hadley D, Nicoll J et al. The potential for efficacy of the modified (ICP 34.5(−)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Therapy 2002; 9: 398–406.

    Article  CAS  Google Scholar 

  11. Hu JC, Coffin RS, Davis CJ, Graham NJ, Groves N, Guest PJ et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res 2006; 12: 6737–6747.

    Article  CAS  Google Scholar 

  12. Chiocca EA . Oncolytic viruses. Nat Rev Cancer 2002; 2: 938–950.

    Article  Google Scholar 

  13. Aghi M, Chiocca EA . Genetically engineered herpes simplex viral vectors in the treatment of brain tumors: a review. Cancer Invest 2003; 21: 278–292.

    Article  CAS  Google Scholar 

  14. Hardcastle J, Kurozumi K, Chiocca EA, Kaur B . Oncolytic viruses driven by tumor-specific promoters. Curr Cancer Drug Targets 2007; 7: 181–189.

    Article  CAS  Google Scholar 

  15. Hedley SJ, Chen J, Mountz JD, Li J, Curiel DT, Korokhov N et al. Targeted and shielded adenovectors for cancer therapy. Cancer Immunol Immunother 2006; 55: 1412–1419.

    Article  CAS  Google Scholar 

  16. Wickham TJ . Targeting adenovirus. Gene Therapy 2000; 7: 110–114.

    Article  CAS  Google Scholar 

  17. Hacker UT, Wingenfeld L, Kofler DM, Schuhmann NK, Lutz S, Herold T et al. Adeno-associated virus serotypes 1–5 mediated tumor cell directed gene transfer and improvement of transduction efficiency. J Gen Med 2005; 7: 1429–1438.

    Article  CAS  Google Scholar 

  18. Sandrin V, Russell SJ, Cosset FL . Targeting retroviral and lentiviral vectors. Curr Top Microbiol Immunol 2003; 281: 137–178.

    CAS  PubMed  Google Scholar 

  19. Frampton ARJ, Goins WF, Nakano K, Burton EA, Glorioso JC . HSV trafficking and development of gene therapy vectors with applications in the nervous system. Gene Therapy 2005; 12: 891–901.

    Article  CAS  Google Scholar 

  20. Laquerre S, Argnani R, Anderson DB, Zucchini S, Manservigi R, Glorioso JC . Heparan sulfate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J Virol 1998; 72: 6119–6130.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Argnani R, Boccafogli L, Marconi PC, Manservigi R . Specific targeted binding of herpes simplex virus type 1 to hepatocytes via the human hepatitis B virus preS1 peptide. Gene Therapy 2004; 11: 1087–1098.

    Article  CAS  Google Scholar 

  22. Zhou G, Ye GJ, Debinski W, Roizman B . Engineered herpes simplex virus 1 is dependent on IL13Ralpha 2 receptor for cell entry and independent of glycoprotein D receptor interaction. Proc Natl Acad Sci USA 2002; 99: 15124–15129.

    Article  CAS  Google Scholar 

  23. Grandi P, Wang S, Schuback D, Krasnykh V, Spear M, Curiel DT et al. HSV-1 virions engineered for specific binding to cell surface receptors. Mol Ther 2004; 9: 419–427.

    Article  CAS  Google Scholar 

  24. Laquerre S, Anderson DB, Stolz DB, Glorioso JC . Recombinant herpes simplex virus type 1 engineered for targeted binding to erythropoietin receptor-bearing cells. J Virol 1998; 72: 9683–9697.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nakano K, Asano R, Tsumoto K, Kwon H, Goins WF, Kumagai I et al. Herpes simplex virus targeting to the EGF receptor by a gD-specific soluble bridging molecule. Mol Ther 2005; 11: 617–626.

    Article  CAS  Google Scholar 

  26. Wikstrand CJ, Hale LP, Batra SK, Hill ML, Humphrey PA, Kurpad SN et al. Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 1995; 55: 3140–3148.

    CAS  PubMed  Google Scholar 

  27. Lal A, Glazer CA, Martinson HM, Friedman HS, Archer GE, Sampson JH et al. Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res 2002; 62: 3335–3339.

    CAS  PubMed  Google Scholar 

  28. Kuan CT, Wikstrand CJ, Archer G, Beers R, Pastan I, Zalutsky MR et al. Increased binding affinity enhances targeting of glioma xenografts by EGFRvIII-specific scFv. Int J Cancer 2000; 88: 962–969.

    Article  CAS  Google Scholar 

  29. Smith IL, Hardwicke MA, Sandri-Goldin RM . Evidence that the herpes simplex virus immediate early protein ICP27 acts post-transcriptionally during infection to regulate gene expression. Virology 1992; 186: 74–86.

    Article  CAS  Google Scholar 

  30. Nishikawa R, Ji XD, Harmon RC, Lazar CS, Gill GN, Cavenee WK et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci USA 1994; 91: 7727–7731.

    Article  CAS  Google Scholar 

  31. Reist CJ, Archer GE, Wikstrand CJ, Bigner DD, Zalutsky MR . Improved targeting of an anti-epidermal growth factor receptor variant III monoclonal antibody in tumor xenografts after labeling using N-succinimidyl 5-iodo-3-pyridinecarboxylate. Cancer Res 1997; 57: 1510–1515.

    CAS  PubMed  Google Scholar 

  32. Goldstein DJ, Weller SK . Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: isolation and characterization of an ICP6 lacZ insertion mutant. J Virol 1988; 62: 196–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Herold BC, Visalli RJ, Susmarski N, Brandt CR, Spear PG . Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J Gene Virol 1994; 75: 1211–1222.

    Article  CAS  Google Scholar 

  34. Matis J, Lesso J, Mucha V, Matisova E . Purification and separation of enveloped and unenveloped herpes simplex virus particles. Acta Virol 1975; 19: 273–280.

    CAS  PubMed  Google Scholar 

  35. Turner DL, Snyder EY, Cepko CL . Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 1990; 4: 833–845.

    Article  CAS  Google Scholar 

  36. Spear MA, Schuback D, Miyata K, Grandi P, Sun F, Yoo L et al. HSV-1 amplicon peptide display vector. J Virol Methods 2003; 107: 71–79.

    Article  CAS  Google Scholar 

  37. Saeki Y, Breakefield XO, Chiocca EA . Improved HSV-1 amplicon packaging system using ICP27-deleted, oversized HSV-1 BAC DNA. In: Machida CA (ed). Viral Vectors for Gene Therapy, Methods and Protocols. Humana Press: Totowa, NJ, 2003. pp 51–60.

    Google Scholar 

  38. Shah K, Tung CH, Chang CH, Slootweg E, O’Loughlin T, Breakefield XO et al. In vivo imaging of HIV protease activity in amplicon vector-transduced gliomas. Cancer Res 2004; 64: 273–278.

    Article  CAS  Google Scholar 

  39. Eisenberg RJ, Ponce de Leon M, Friedman HM, Fries LF, Frank MM, Hastings JC et al. Complement component C3b binds directly to purified glycoprotein C of herpes simplex virus types 1 and 2. Microb Pathol 1987; 3: 423–435.

    Article  CAS  Google Scholar 

  40. Shah K, Tang Y, Breakefield X, Weissleder R . Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo. Oncogene 2003; 22: 6865–6872.

    Article  CAS  Google Scholar 

  41. Tal-Singer R, Peng C, Ponce De Leon M, Abrams WR, Banfield BW, Tufaro F et al. Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules. J Virol 1995; 69: 4471–4483.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Grandi P, Spear M, Breakefield XO, Wang S . Targeting HSV amplicon vectors. Methods 2004; 33: 179–186.

    Article  CAS  Google Scholar 

  43. Paraskevakou G, Allen C, Nakamura T, Zollman P, James CD, Peng KW et al. Epidermal growth factor receptor (EGFR)-retargeted measles virus strains effectively target EGFR- or EGFRvIII expressing gliomas. Mol Ther 2007; 15: 677–686.

    Article  CAS  Google Scholar 

  44. Nicholas MK, Lukas RV, Jafri NF, Faoro L, Salgia R . Epidermal growth factor receptor-mediated signal transduction in the development and therapy of gliomas. Clin Cancer Res 2006; 12: 7261–7270.

    Article  CAS  Google Scholar 

  45. Luker GD, Bardill JP, Prior JL, Pica CM, Piwnica-Worms D, Leib DA . Noninvasive bioluminescence imaging of herpes simplex virus type 1 infection and therapy in living mice. J Virol 2002; 76: 12149–12161.

    Article  CAS  Google Scholar 

  46. Yamamoto S, Deckter LA, Kasai K, Chiocca EA, Saeki Y . Imaging immediate-early and strict-late promoter activity during oncolytic herpes simplex virus type 1 infection and replication in tumors. Gene Therapy 2006; 13: 1731–1736.

    Article  CAS  Google Scholar 

  47. Pike L, Petravicz J, Wang S . Bioluminescence imaging after HSV amplicon vector delivery into brain. J Gene Med 2006; 8: 804–813.

    Article  CAS  Google Scholar 

  48. Shah K, Breakefield X . HSV amplicon vectors for cancer therapy. Curr Gene Ther 2006; 6: 361–370.

    Article  CAS  Google Scholar 

  49. Pechan PA, Herrlinger U, Aghi M, Jacobs A, Breakefield XO . Combined HSV-1 recombinant and amplicon piggyback vectors: replication-competent and defective forms, and therapeutic efficacy for experimental gliomas. J Gene Med 1999; 1: 176–185.

    Article  CAS  Google Scholar 

  50. Carew JF, Kooby DA, Halterman MW, Kim SH, Federoff HJ, Fong Y . A novel approach to cancer therapy using an oncolytic herpes virus to package amplicons containing cytokine genes. Mol Ther 2001; 4: 250–256.

    Article  CAS  Google Scholar 

  51. Zager JS, Delman KA, Malhotra S, Ebright MI, Bennett JJ, Kates T et al. Combination vascular delivery of herpes simplex oncolytic viruses and amplicon mediated cytokine gene transfer is effective therapy for experimental liver cancer. Mol Med 2001; 7: 561–568.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Bigner for his kind gift of the MR1-1 and MRB constructs. We also thank Ms Deborah Schuback for advice on virion purification and western blots, Ms Suzanne McDavitt for skilled editorial assistance and the Center for Molecular Imaging Research at Massachusetts General Hospital for help and facilities to assess bioluminescence. This work was supported by NCI Grants CA69246, CA92782 and CA119298, and by NINDS NS 40923.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Grandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grandi, P., Fernandez, J., Szentirmai, O. et al. Targeting HSV-1 virions for specific binding to epidermal growth factor receptor-vIII-bearing tumor cells. Cancer Gene Ther 17, 655–663 (2010). https://doi.org/10.1038/cgt.2010.22

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.22

Keywords

This article is cited by

Search

Quick links