Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting MMP-9, uPAR, and cathepsin B inhibits invasion, migration and activates apoptosis in prostate cancer cells

Abstract

Prostate cancer is one of the most commonly diagnosed cancers and the second leading cause of cancer deaths in Americans. The high mortality rate is mainly attributed to the invasiveness and metastasis of advanced prostate cancer. Targeting the molecules involved in metastasis could be an effective mode of treatment for prostate cancer. In this study, the therapeutic potential of siRNA-mediated targeting of matrix metalloproteinase-9 (MMP-9), urokinase plasminogen activator receptor (uPAR), and cathepsin B (CB) in prostate cancer was carried out using single and bi-cistronic siRNA-expressing constructs. Downregulation of MMP-9, uPAR, and CB inhibited matrigel invasion, in vitro angiogenesis and wound-healing migration ability of PC3 and DU145 prostate cancer cell lines. In addition, the siRNA treatments induced apoptosis in the tumor cells as determined by TUNEL and DNA laddering assays. An attempt to elucidate the apoptotic pathway showed the involvement of FAS-mediated activation of caspases-8 and -7. Further, mice with orthotopic prostate tumors treated with siRNA-expressing vectors showed significant inhibition in tumor growth and migration. In conclusion, we report that the siRNA-mediated knockdown of MMP-9, uPAR, and CB inhibits invasiveness and migration of prostate cancer cells and leads to apoptosis both in vitro and in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

CB:

cathepsin B

CMV:

cytomegalovirus

ECM:

extracellular matrix

FADD:

Fas-associated death domain

HMEC:

human microvascular endothelial cells

MMP:

matrix metalloproteases

PBS:

phosphate-buffered saline

RT-PCR:

reverse transcription polymerase chain reaction

SDS-PAGE:

sodium dodecyl sulphate-polyacrlyamide gel electrophoresis

uPAR:

urokinase-type plasminogen activator receptor

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 71–96.

    Article  PubMed  Google Scholar 

  2. Albertsen PC, Hanley JA, Barrows GH, Penson DF, Kowalczyk PD, Sanders MM et al. Prostate cancer and the Will Rogers phenomenon. J Natl Cancer Inst 2005; 97: 1248–1253.

    Article  PubMed  Google Scholar 

  3. Bianco Jr FJ, Wood Jr DP, Gomes de OJ, Nemeth JA, Beaman AA, Cher ML . Proliferation of prostate cancer cells in the bone marrow predicts recurrence in patients with localized prostate cancer. Prostate 2001; 49: 235–242.

    Article  PubMed  Google Scholar 

  4. Roth BJ . Prostate cancer chemotherapy: emerging from the shadows. J Clin Oncol 2005; 23: 3302–3303.

    Article  PubMed  Google Scholar 

  5. Chen AC, Petrylak DP . Complications of androgen-deprivation therapy in men with prostate cancer. Curr Urol Rep 2005; 6: 210–216.

    Article  PubMed  Google Scholar 

  6. Ferrero JM . Hormone resistant metastatic prostate cancer: analysis of two phase III clinical studies. Bull Cancer 2005; 92: 425–427.

    PubMed  Google Scholar 

  7. Petrylak DP . Future directions in the treatment of androgen-independent prostate cancer. Urology 2005; 65: 8–12.

    Article  PubMed  Google Scholar 

  8. Bubendorf L, Schopfer A, Wagner U, Sauter G, Moch H, Willi N et al. Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum Pathol 2000; 31: 578–583.

    Article  CAS  PubMed  Google Scholar 

  9. Brooks SA, Lomax-Browne HJ, Carter TM, Kinch CE, Hall DM . Molecular interactions in cancer cell metastasis. Acta Histochem 2010; 112: 3–25.

    Article  CAS  PubMed  Google Scholar 

  10. Egeblad M, Werb Z . New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2: 161–174.

    Article  CAS  PubMed  Google Scholar 

  11. Duffy MJ . The urokinase plasminogen activator system: role in malignancy. Curr Pharm Des 2004; 10: 39–49.

    Article  CAS  PubMed  Google Scholar 

  12. Dano K, Behrendt N, Hoyer-Hansen G, Johnsen M, Lund LR, Ploug M et al. Plasminogen activation and cancer. Thromb Haemost 2005; 93: 676–681.

    Article  CAS  PubMed  Google Scholar 

  13. Deryugina EI, Quigley JP . Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006; 25: 9–34.

    Article  CAS  PubMed  Google Scholar 

  14. Rao JS . Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 2003; 3: 489–501.

    Article  CAS  PubMed  Google Scholar 

  15. Dass K, Ahmad A, Azmi AS, Sarkar SH, Sarkar FH . Evolving role of uPA/uPAR system in human cancers. Cancer Treat Rev 2008; 34: 122–136.

    Article  CAS  PubMed  Google Scholar 

  16. Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L . ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res 2003; 63: 1684–1695.

    CAS  PubMed  Google Scholar 

  17. Blasi F, Carmeliet P . uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 2002; 3: 932–943.

    Article  CAS  PubMed  Google Scholar 

  18. Yuan ZL, Guan YJ, Chatterjee D, Chin YE . Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 2005; 307: 269–273.

    Article  CAS  PubMed  Google Scholar 

  19. Khasigov PZ, Podobed OV, Gracheva TS, Salbiev KD, Grachev SV, Berezov TT . Role of matrix metalloproteinases and their inhibitors in tumor invasion and metastasis. Biochemistry (Mosc) 2003; 68: 711–717.

    Article  CAS  Google Scholar 

  20. Freije JM, ez-Itza I, Balbin M, Sanchez LM, Blasco R, Tolivia J et al. Molecular cloning and expression of collagenase-3, a novel human matrix metalloproteinase produced by breast carcinomas. J Biol Chem 1994; 269: 16766–16773.

    CAS  PubMed  Google Scholar 

  21. Muller D, Wolf C, Abecassis J, Millon R, Engelmann A, Bronner G et al. Increased stromelysin 3 gene expression is associated with increased local invasiveness in head and neck squamous cell carcinomas. Cancer Res 1993; 53: 165–169.

    CAS  PubMed  Google Scholar 

  22. Stamenkovic I . Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 2000; 10: 415–433.

    Article  CAS  PubMed  Google Scholar 

  23. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000; 2: 737–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mira E, Lacalle RA, Buesa JM, de Buitrago GG, Jimenez-Baranda S, Gomez-Mouton C et al. Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface. J Cell Sci 2004; 117: 1847–1857.

    Article  CAS  PubMed  Google Scholar 

  25. Tu C, Ortega-Cava CF, Chen G, Fernandes ND, Cavallo-Medved D, Sloane BF et al. Lysosomal cathepsin B participates in the podosome-mediated extracellular matrix degradation and invasion via secreted lysosomes in v-Src fibroblasts. Cancer Res 2008; 68: 9147–9156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Creemers LB, Hoeben KA, Jansen DC, Buttle DJ, Beertsen W, Everts V . Participation of intracellular cysteine proteinases, in particular cathepsin B, in degradation of collagen in periosteal tissue explants. Matrix Biol 1998; 16: 575–584.

    Article  CAS  PubMed  Google Scholar 

  27. Yin LL, Chung CM, Chen J, Fok KL, Ng CP, Jia RR et al. A suppressor of multiple extracellular matrix-degrading proteases and cancer metastasis. J Cell Mol Med 2009; 13: 4034–4041.

    Article  PubMed  Google Scholar 

  28. Hwang JH, Lee SH, Lee KH, Lee KY, Kim H, Ryu JK et al. Cathepsin B is a target of Hedgehog signaling in pancreatic cancer. Cancer Lett 2009; 273: 266–272.

    Article  CAS  PubMed  Google Scholar 

  29. Rabbani SA, Gladu J . Urokinase receptor antibody can reduce tumor volume and detect the presence of occult tumor metastases in vivo. Cancer Res 2002; 62: 2390–2397.

    CAS  PubMed  Google Scholar 

  30. Trauth BC, Klas C, Peters AM, Matzku S, Moller P, Falk W et al. Monoclonal antibody-mediated tumor regression by induction of apoptosis. Science 1989; 245: 301–305.

    Article  CAS  PubMed  Google Scholar 

  31. Frlan R, Gobec S . Inhibitors of cathepsin B. Curr Med Chem 2006; 13: 2309–2327.

    Article  CAS  PubMed  Google Scholar 

  32. Nemeth JA, Yousif R, Herzog M, Che M, Upadhyay J, Shekarriz B et al. Matrix metalloproteinase activity, bone matrix turnover, and tumor cell proliferation in prostate cancer bone metastasis. J Natl Cancer Inst 2002; 94: 17–25.

    Article  CAS  PubMed  Google Scholar 

  33. Arens N, Gandhari M, Bleyl U, Hildenbrand R . In vitro suppression of urokinase plasminogen activator in breast cancer cells—a comparison of two antisense strategies. Int J Oncol 2005; 26: 113–119.

    CAS  PubMed  Google Scholar 

  34. D’Alessio S, Margheri F, Pucci M, Del Rosso A, Monia BP, Bologna M et al. Antisense oligodeoxynucleotides for urokinase-plasminogen activator receptor have anti-invasive and anti-proliferative effects in vitro and inhibit spontaneous metastases of human melanoma in mice. Int J Cancer 2004; 110: 125–133.

    Article  PubMed  Google Scholar 

  35. Gondi CS, Lakka SS, Yanamandra N, Siddique K, Dinh DH, Olivero WC et al. Expression of antisense uPAR and antisense uPA from a bicistronic adenoviral construct inhibits glioma cell invasion, tumor growth, and angiogenesis. Oncogene 2003; 22: 5967–5975.

    Article  CAS  PubMed  Google Scholar 

  36. Margheri F, D’Alessio S, Serrati S, Pucci M, Annunziato F, Cosmi L et al. Effects of blocking urokinase receptor signaling by antisense oligonucleotides in a mouse model of experimental prostate cancer bone metastases. Gene Ther 2005; 12: 702–714.

    Article  CAS  PubMed  Google Scholar 

  37. Gartel AL, Kandel ES . RNA interference in cancer. Biomol Eng 2006; 23: 17–34.

    Article  CAS  PubMed  Google Scholar 

  38. Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS . RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene 2004; 23: 8486–8496.

    Article  CAS  PubMed  Google Scholar 

  39. Lakka SS, Gondi CS, Yanamandra N, Dinh DH, Olivero WC, Gujrati M et al. Synergistic down regulation of urokinase plasminogen activator receptor and matrix metalloproteinase-9 in SNB19 glioblastoma cells efficiently inhibits glioma cell invasion, angiogenesis, and tumor growth. Cancer Res 2003; 63: 2454–2461.

    CAS  PubMed  Google Scholar 

  40. Jung JW, Hwang SY, Hwang JS, Oh ES, Park S, Han IO . Ionising radiation induces changes associated with epithelial-mesenchymal transdifferentiation and increased cell motility of A549 lung epithelial cells. Eur J Cancer 2007; 43: 1214–1224.

    Article  CAS  PubMed  Google Scholar 

  41. Gong J, Traganos F, Darzynkiewicz Z . A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Anal Biochem 1994; 218: 314–319.

    Article  CAS  PubMed  Google Scholar 

  42. Pulukuri SM, Gondi CS, Lakka SS, Jutla A, Estes N, Gujrati M et al. RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. J Biol Chem 2005; 280: 36529–36540.

    Article  CAS  PubMed  Google Scholar 

  43. Aalinkeel R, Nair MP, Sufrin G, Mahajan SD, Chadha KC, Chawda RP et al. Gene expression of angiogenic factors correlates with metastatic potential of prostate cancer cells. Cancer Res 2004; 64: 5311–5321.

    Article  CAS  PubMed  Google Scholar 

  44. Friedrich B, Jung K, Lein M, Turk I, Rudolph B, Hampel G et al. Cathepsins B, H, L and cysteine protease inhibitors in malignant prostate cell lines, primary cultured prostatic cells and prostatic tissue. Eur J Cancer 1999; 35: 138–144.

    Article  CAS  PubMed  Google Scholar 

  45. Sternlicht MD, Bergers G . Matrix metalloproteinases as emerging targets in anticancer therapy: status and prospects. Emerging Ther Targets 2000; 4: 609–633.

    Article  CAS  Google Scholar 

  46. Lakka SS, Rajan M, Gondi CS, Yanamandra N, Chandrasekar N, Jasti SL et al. Adenovirus-mediated expression of antisense MMP-9 in glioma cells inhibits tumor growth and invasion. Oncogene 2002; 21: 8011–8019.

    Article  CAS  PubMed  Google Scholar 

  47. Kunigal S, Lakka SS, Gondi CS, Estes N, Rao JS . RNAi-mediated downregulation of urokinase plasminogen activator receptor and matrix metalloprotease-9 in human breast cancer cells results in decreased tumor invasion, angiogenesis and growth. Int J Cancer 2007; 121: 2307–2316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gondi CS, Lakka SS, Dinh D, Olivero W, Gujrati M, Rao JS . Downregulation of uPA, uPAR and MMP-9 using small, interfering, hairpin RNA (siRNA) inhibits glioma cell invasion, angiogenesis and tumor growth. Neuron Glia Biol 2004; 1: 165–176.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tummalapalli P, Spomar D, Gondi CS, Olivero WC, Gujrati M, Dinh DH et al. RNAi-mediated abrogation of cathepsin B and MMP-9 gene expression in a malignant meningioma cell line leads to decreased tumor growth, invasion and angiogenesis. Int J Oncol 2007; 31: 1039–1050.

    CAS  PubMed  Google Scholar 

  50. Mohamed MM, Sloane BF . Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 2006; 6: 764–775.

    Article  CAS  PubMed  Google Scholar 

  51. Mohr S, McCormick TS, Lapetina EG . Macrophages resistant to endogenously generated nitric oxide-mediated apoptosis are hypersensitive to exogenously added nitric oxide donors: dichotomous apoptotic response independent of caspase 3 and reversal by the mitogen-activated protein kinase kinase (MEK) inhibitor PD 098059. Proc Natl Acad Sci USA 1998; 95: 5045–5050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Woessmann W, Zwanzger D, Borkhardt A . ERK signaling pathway is differentially involved in erythroid differentiation of K562 cells depending on time and the inducing agent. Cell Biol Int 2004; 28: 403–410.

    Article  CAS  PubMed  Google Scholar 

  53. Bacus SS, Gudkov AV, Lowe M, Lyass L, Yung Y, Komarov AP et al. Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 2001; 20: 147–155.

    Article  CAS  PubMed  Google Scholar 

  54. Wang X, Martindale JL, Holbrook NJ . Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem 2000; 275: 39435–39443.

    Article  CAS  PubMed  Google Scholar 

  55. Bhoopathi P, Chetty C, Kunigal S, Vanamala SK, Rao JS, Lakka SS . Blockade of tumor growth due to matrix metalloproteinase-9 inhibition is mediated by sequential activation of beta1-integrin, ERK, and NF-kappaB. J Biol Chem 2008; 283: 1545–1552.

    Article  CAS  PubMed  Google Scholar 

  56. Gondi CS, Kandhukuri N, Kondraganti S, Gujrati M, Olivero WC, Dinh DH et al. RNA interference-mediated simultaneous down regulation of urokinase-type plasminogen activator receptor and cathepsin B induces caspase-8-mediated apoptosis in SNB19 human glioma cells. Mol Cancer Ther 2006; 5: 3197–3208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mo YY, Beck WT . DNA damage signals induction of fas ligand in tumor cells. Mol Pharmacol 1999; 55: 216–222.

    Article  CAS  PubMed  Google Scholar 

  58. Chetty C, Bhoopathi P, Lakka SS, Rao JS . MMP-2 siRNA induced Fas/CD95-mediated extrinsic II apoptotic pathway in the A549 lung adenocarcinoma cell line. Oncogene 2007; 26: 7675–7683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kunigal S, Lakka SS, Joseph P, Estes N, Rao JS . Matrix metalloproteinase-9 inhibition down-regulates radiation-induced nuclear factor-{kappa}B activity leading to apoptosis in breast tumors. Clin Cancer Res 2008; 14: 3617–3626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boldin MP, Varfolomeev EE, Pancer Z, Mett IL, Camonis JH, Wallach D . A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem 1995; 270: 7795–7798.

    Article  CAS  PubMed  Google Scholar 

  61. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM . FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995; 81: 505–512.

    Article  CAS  PubMed  Google Scholar 

  62. Lavrik IN, Golks A, Krammer PH . Caspases: pharmacological manipulation of cell death. J Clin Invest 2005; 115: 2665–2672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thornberry NA, Lazebnik Y . Caspases: enemies within. Science 1998; 281: 1312–1316.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Shellee Abraham for manuscript preparation. We also thank Diana Meister and Sushma Jasti for manuscript review. This research was supported by National Cancer Institute Grant CA75557, CA116708, CA138409 and Caterpillar Inc., OSF St Francis Inc. Peoria, IL (to JSR). The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official views of NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J S Rao.

Ethics declarations

Competing interests

Dr Rao's work has been funded by NIH. The other authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nalla, A., Gorantla, B., Gondi, C. et al. Targeting MMP-9, uPAR, and cathepsin B inhibits invasion, migration and activates apoptosis in prostate cancer cells. Cancer Gene Ther 17, 599–613 (2010). https://doi.org/10.1038/cgt.2010.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.16

Keywords

This article is cited by

Search

Quick links