Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dynamics of multiple myeloma tumor therapy with a recombinant measles virus

Abstract

Replication-competent viruses are being tested as tumor therapy agents. The fundamental premise of this therapy is the selective infection of the tumor cell population with the amplification of the virus. Spread of the virus in the tumor ultimately should lead to eradication of the cancer. Tumor virotherapy is unlike any other form of cancer therapy as the outcome depends on the dynamics that emerge from the interaction between the virus and tumor cell populations both of which change in time. We explore these interactions using a model that captures the salient biological features of this system in combination with in vivo data. Our results show that various therapeutic outcomes are possible ranging from tumor eradication to oscillatory behavior. Data from in vivo studies support these conclusions and validate our modeling approach. Such realistic models can be used to understand experimental observations, explore alternative therapeutic scenarios and develop techniques to optimize therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Reid T, Galanis E, Abbruzzese J, Sze D, Wein LM, Andrews J et al. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res 2002; 62: 6070–6079.

    CAS  PubMed  Google Scholar 

  2. Lorence RM, Roberts MS, O'Neil JD, Groene WS, Miller JA, Mueller SN et al. Phase 1 clinical experience using intravenous administration of PV701, an oncolytic Newcastle disease virus. Curr Cancer Drug Targets 2007; 7: 157–167.

    Article  CAS  Google Scholar 

  3. Reid V, Yu Z, Schuman T, Li S, Singh P, Fong Y et al. Herpes oncolytic therapy of salivary gland carcinomas. Int J Cancer 2008; 122: 202–208.

    Article  CAS  Google Scholar 

  4. Kirn D, Martuza RL, Zwiebel J . Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nat Med 2001; 7: 781–787.

    Article  CAS  Google Scholar 

  5. Dingli D, Cascino MD, Josic K, Russell SJ, Bajzer Z . Mathematical modeling of cancer radiovirotherapy. Math Biosci 2006; 199: 55–78.

    Article  Google Scholar 

  6. Friedman A, Tian JP, Fulci G, Chiocca EA, Wang J . Glioma virotherapy: effects of innate immune suppression and increased viral replication capacity. Cancer Res 2006; 66: 2314–2319.

    Article  CAS  Google Scholar 

  7. Wein LM, Wu JT, Ianculescu AG, Puri RK . A mathematical model of the impact of infused targeted cytotoxic agents on brain tumours: implications for detection, design and delivery. Cell Prolif 2002; 35: 343–361.

    Article  CAS  Google Scholar 

  8. Wein LM, Wu JT, Kirn DH . Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: implications for virus design and delivery. Cancer Res 2003; 63: 1317–1324.

    CAS  PubMed  Google Scholar 

  9. Wodarz D . Viruses as antitumor weapons: defining conditions for tumor remission. Cancer Res 2001; 61: 3501–3507.

    CAS  PubMed  Google Scholar 

  10. Wodarz D . Gene therapy for killing p53-negative cancer cells: use of replicating versus nonreplicating agents. Hum Gene Ther 2003; 14: 153–159.

    Article  CAS  Google Scholar 

  11. Wu JT, Byrne HM, Kirn DH, Wein LM . Modeling and analysis of a virus that replicates selectively in tumor cells. Bull Math Biol 2001; 63: 731–768.

    Article  CAS  Google Scholar 

  12. Wu JT, Kirn DH, Wein LM . Analysis of a three-way race between tumor growth, a replication-competent virus and an immune response. Bull Math Biol 2004; 66: 605–625.

    Article  Google Scholar 

  13. Grote D, Russell SJ, Cornu TI, Cattaneo R, Vile R, Poland GA et al. Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood 2001; 97: 3746–3754.

    Article  CAS  Google Scholar 

  14. Peng KW, Ahmann GJ, Pham L, Greipp PR, Cattaneo R, Russell SJ . Systemic therapy of myeloma xenografts by an attenuated measles virus. Blood 2001; 98: 2002–2007.

    Article  CAS  Google Scholar 

  15. Peng KW, TenEyck CJ, Galanis E, Kalli KR, Hartmann LC, Russell SJ . Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res 2002; 62: 4656–4662.

    CAS  PubMed  Google Scholar 

  16. Phuong LK, Allen C, Peng KW, Giannini C, Greiner S, TenEyck CJ et al. Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblastoma multiforme. Cancer Res 2003; 63: 2462–2469.

    CAS  PubMed  Google Scholar 

  17. McDonald CJ, Erlichman C, Ingle JN, Rosales GA, Allen C, Greiner SM et al. A measles virus vaccine strain derivative as a novel oncolytic agent against breast cancer. Breast Cancer Res Treat 2006; 99: 177–184.

    Article  CAS  Google Scholar 

  18. Hadac EM, Peng KW, Nakamura T, Russell SJ . Reengineering paramyxovirus tropism. Virology 2004; 329: 217–225.

    Article  CAS  Google Scholar 

  19. Nakamura T, Peng KW, Harvey M, Greiner S, Lorimer IA, James CD et al. Rescue and propagation of fully retargeted oncolytic measles viruses. Nat Biotechnol 2005; 23: 209–214.

    Article  CAS  Google Scholar 

  20. Galanis E, Bateman A, Johnson K, Diaz RM, James CD, Vile R et al. Use of viral fusogenic membrane glycoproteins as novel therapeutic transgenes in gliomas. Hum Gene Ther 2001; 12: 811–821.

    Article  CAS  Google Scholar 

  21. Peng KW, Facteau S, Wegman T, O'Kane D, Russell SJ . Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat Med 2002; 8: 527–531.

    Article  CAS  Google Scholar 

  22. Dingli D, Kemp BJ, O'Connor MK, Morris JC, Russell SJ, Lowe VJ . Combined I-124 positron emission tomography/computed tomography imaging of NIS gene expression in animal models of stably transfected and intravenously transfected tumor. Mol Imaging Biol 2006; 8: 16–23.

    Article  Google Scholar 

  23. Dingli D, Peng KW, Harvey ME, Greipp PR, O'Connor MK, Cattaneo R et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 2004; 103: 1641–1646.

    Article  CAS  Google Scholar 

  24. Peng KW, Hadac EM, Anderson BD, Myers R, Harvey M, Greiner SM et al. Pharmacokinetics of oncolytic measles virotherapy: eventual equilibrium between virus and tumor in an ovarian cancer xenograft model. Cancer Gene Ther 2006; 13: 732–738.

    Article  CAS  Google Scholar 

  25. Bajzer Z, Carr T, Josic K, Russell SJ, Dingli D . Modeling of cancer virotherapy with recombinant measles viruses. J Theor Biol 2008; 252: 109–122.

    Article  Google Scholar 

  26. Myers RM, Greiner SM, Harvey ME, Griesmann G, Kuffel MJ, Buhrow SA et al. Preclinical pharmacology and toxicology of intravenous MV-NIS, an oncolytic measles virus administered with or without cyclophosphamide. Clin Pharmacol Ther 2007; 82: 700–710.

    Article  CAS  Google Scholar 

  27. Westendorf JJ, Ahmann GJ, Greipp PR, Witzig TE, Lust JA, Jelinek DF . Establishment and characterization of three myeloma cell lines that demonstrate variable cytokine responses and abilities to produce autocrine interleukin-6. Leukemia 1996; 10: 866–876.

    CAS  PubMed  Google Scholar 

  28. Spratt JA, von Fournier D, Spratt JS, Weber EE . Decelerating growth and human breast cancer. Cancer 1993; 71: 2013–2019.

    Article  CAS  Google Scholar 

  29. Bajzer Z . Gompertzian growth as a self-similar and allometric process. Growth Dev Aging 1999; 63: 3–11.

    CAS  PubMed  Google Scholar 

  30. Akaike H . A new look at the statistical model identification. IEEE Trans Automat Contr 1974; 19: 716–723.

    Article  Google Scholar 

  31. SCIENTIST, Micromath Scientific Software. Salt Lake City, Utah, 1995.

  32. Offord C, Bajzer Z . A hybrid global optimization algorithm involving simplex and inductive search. Lect Notes Comput Sci 2006; 2074: 680–688.

    Article  Google Scholar 

  33. Russell SJ . RNA viruses as virotherapy agents. Cancer Gene Ther 2002; 9: 961–966.

    Article  CAS  Google Scholar 

  34. Russell SJ, Peng KW . Viruses as anticancer drugs. Trends Pharmacol Sci 2007; 28: 326–333.

    Article  CAS  Google Scholar 

  35. Anderson BD, Nakamura T, Russell SJ, Peng KW . High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res 2004; 64: 4919–4926.

    Article  CAS  Google Scholar 

  36. Ong HT, Timm MM, Greipp PR, Witzig TE, Dispenzieri A, Russell SJ et al. Oncolytic measles virus targets high CD46 expression on multiple myeloma cells. Exp Hematol 2006; 34: 713–720.

    Article  CAS  Google Scholar 

  37. Dingli D, Peng KW, Harvey ME, Vongpunsawad S, Bergert ER, Kyle RA et al. Interaction of measles virus vectors with Auger electron emitting radioisotopes. Biochem Biophys Res Commun 2005; 337: 22–29.

    Article  CAS  Google Scholar 

  38. Pratt G, Goodyear O, Moss P . Immunodeficiency and immunotherapy in multiple myeloma. Br J Haematol 2007; 138: 563–579.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was possible through a career development award from Mayo Foundation to DD, Grant CA100634 (NCI) to SJR, the Mayo Santulli Fund to ZB, and NSF Grants DMS-0604429 and DMS-0817649 and a Texas ARP/ATP award to KJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Dingli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dingli, D., Offord, C., Myers, R. et al. Dynamics of multiple myeloma tumor therapy with a recombinant measles virus. Cancer Gene Ther 16, 873–882 (2009). https://doi.org/10.1038/cgt.2009.40

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.40

Keywords

This article is cited by

Search

Quick links