Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adenovirus delivery of human CD40 ligand gene confers direct therapeutic effects on carcinomas

Abstract

CD40, a tumor necrosis factor receptor family member, is an emerging target for cancer therapy being best appreciated as an important regulator of the anti-tumor immune response. In this study, we report the development of a replication-defective recombinant adenovirus (RAd) vector expressing human CD40 ligand (RAd-hCD40L) and show that sustained engagement of the CD40 pathway in malignant cells results in direct anti-proliferative and pro-apoptotic effects. Thus, transduction of CD40-positive bladder, cervical and ovarian carcinoma cell lines with RAd-hCD40L potently inhibits their proliferation in vitro, whereas CD40-negative lines remain unresponsive. RAd-hCD40L is also found to be superior to recombinant CD40L in inducing carcinoma cell death and in amplifying the cytotoxic effects of the chemotherapeutic agents 5-fluorouracil, cis-platin and mitomycin C. Soluble CD40L is produced by RAd-hCD40L transduced carcinoma cells but unlike other soluble tumor necrosis factor family ligands, it does not interfere with the death-promoting activity of its membrane-bound form. In a mouse xenograft tumor model bearing a human bladder carcinoma, intratumoral delivery of RAd-hCD40L suppresses cancer growth. These findings highlight the potential of exploiting the CD40 pathway in carcinomas using CD40L gene transfer alone or in combination with other modalities for cancer therapy. Our results have also broader implications in understanding the multifaceted anti-tumor activities of the CD40 pathway in carcinomas, which thus offer an attractive option for future clinical application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Noelle RJ . CD40 and its ligand in host defense. Immunity 1996; 4: 415–419.

    Article  CAS  Google Scholar 

  2. van Kooten C, Banchereau J . CD40-CD40 ligand. J Leukoc Biol 2000; 67: 2–17.

    Article  CAS  Google Scholar 

  3. Mackey MF, Gunn JR, Maliszewski C, Kikutani H, Noelle RJ, Barth RJ . Dendritic cells require maturation via CD40 to generate protective anti-tumour immunity. J Immunol 1998; 161: 2094–2098.

    CAS  PubMed  Google Scholar 

  4. Kikuchi T, Crystal RG . Anti-tumor immunity induced by in vivo adenovirus vector-mediated expression of CD40 ligand in tumor cells. Hum Gene Ther 1999; 10: 1375–1387.

    Article  CAS  Google Scholar 

  5. Sun Y, Peng D, Lecanda J, Schmitz V, Barajas M, Qian C et al. In vivo gene transfer of CD40 ligand into colon cancer cells induces local production of cytokines and chemokines, tumor eradication and protective antitumor immunity. Gene Ther 2000; 7: 1467–1476.

    Article  CAS  Google Scholar 

  6. Loskog A, Dzojic H, Vikman S, Ninalga C, Essand M, Korsgren O et al. Adenovirus CD40 ligand gene therapy counteracts immune escape mechanisms in the tumor microenvironment. J Immunol 2004; 172: 7200–7205.

    Article  CAS  Google Scholar 

  7. Noguchi M, Imaizumi K, Kawabe T, Wakayama H, Horio Y, Sekido Y et al. Induction of antitumor immunity by transduction of CD40 ligand gene and interferon-gamma gene into lung cancer. Cancer Gene Ther 2001; 8: 421–429.

    Article  CAS  Google Scholar 

  8. Loskog A, Bjorkland A, Brown MP, Korsgren O, Malmstrom PU, Totterman TH . Potent antitumor effects of CD154 transduced tumor cells in experimental bladder cancer. J Urol 2001; 166: 1093–1097.

    Article  CAS  Google Scholar 

  9. Loskog AS, Fransson ME, Totterman TT . AdCD40L gene therapy counteracts T regulatory cells and cures aggressive tumors in an orthotopic bladder cancer model. Clin Cancer Res 2005; 11: 8816–8821.

    Article  CAS  Google Scholar 

  10. Hill SC, Youde SJ, Man S, Teale GR, Baxendale AJ, Hislop A et al. Activation of CD40 in cervical carcinoma cells facilitates CTL responses and augments chemotherapy-induced apoptosis. J Immunol 2005; 174: 41–50.

    Article  CAS  Google Scholar 

  11. Sabel MS, Yamada M, Kawaguchi Y, Chen FA, Takita H, Bankert RB . CD40 expression on human lung cancer correlates with metastatic spread. Cancer Immunol Immunother 2000; 49: 101–108.

    Article  CAS  Google Scholar 

  12. Eliopoulos AG, Dawson CW, Mosialos G, Floettmann JE, Rowe M, Armitage RJ et al. CD40-induced growth inhibition in epithelial cells is mimicked by Epstein-Barr virus-encoded LMP1: involvement of TRAF3 as a common mediator. Oncogene 1996; 13: 2243–2254.

    CAS  PubMed  Google Scholar 

  13. Tong AW, Papayoti MH, Netto G, Armstrong DT, Ordonez G, Lawson JM et al. Growth-inhibitory effects of CD40 ligand (CD154) and its endogenous expression in human breast cancer. Clin Cancer Res 2001; 7: 691–703.

    CAS  PubMed  Google Scholar 

  14. Ghamande S, Hylander BL, Oflazoglu E, Lele S, Fanslow W, Repasky EA . Recombinant CD40 ligand therapy has significant antitumor effects on CD40-positive ovarian tumor xenografts grown in SCID mice and demonstrates an augmented effect with cisplatin. Cancer Res 2001; 61: 7556–7562.

    CAS  PubMed  Google Scholar 

  15. Hirano A, Longo DL, Taub DD, Ferris DK, Young LS, Eliopoulos AG et al. Inhibition of human breast carcinoma growth by a soluble recombinant human CD40 ligand. Blood 1999; 93: 2999–3007.

    CAS  PubMed  Google Scholar 

  16. Eliopoulos AG, Davies C, Knox PG, Gallagher NJ, Afford SC, Adams DH et al. CD40 induces apoptosis in carcinoma cells through activation of cytotoxic ligands of the tumor necrosis factor superfamily. Mol Cell Biol 2000; 20: 5503–5515.

    Article  CAS  Google Scholar 

  17. Grell M, Zimmermann G, Gottfried E, Chen CM, Grünwald U, Huang DC et al. Induction of cell death by tumour necrosis factor (TNF) receptor 2, CD40 and CD30: a role for TNF-R1 activation by endogenous membrane-anchored TNF. EMBO J 1999; 18: 3034–3043.

    Article  CAS  Google Scholar 

  18. Hess S, Engelmann H . A novel function of CD40: induction of cell death in transformed cells. J Exp Med 1996; 183: 159–167.

    Article  CAS  Google Scholar 

  19. Shaw NJ, Georgopoulos NT, Southgate J, Trejdosiewicz LK . Effects of loss of p53 and p16 function on life span and survival of human urothelial cells. Int J Cancer 2005; 116: 634–639.

    Article  CAS  Google Scholar 

  20. Davies CC, Bem D, Young LS, Eliopoulos AG . NF-kappaB overrides the apoptotic program of TNF receptor 1 but not CD40 in carcinoma cells. Cell Signal 2005; 17: 729–738.

    Article  CAS  Google Scholar 

  21. Eliopoulos AG, Young LS . The role of the CD40 pathway in the pathogenesis and treatment of cancer. Curr Opin Pharmacol 2004; 4: 360–367.

    Article  CAS  Google Scholar 

  22. Tong AW, Stone MJ . Prospects for CD40-directed experimental therapy of human cancer. Cancer Gene Ther 2003; 10: 1–13.

    Article  CAS  Google Scholar 

  23. Dallman C, Johnson PW, Packham G . Differential regulation of cell survival by CD40. Apoptosis 2003; 8: 45–53.

    Article  CAS  Google Scholar 

  24. Vonderheide RH, Dutcher JP, Anderson JE, Eckhardt SG, Stephans KF, Razvillas B et al. Phase I study of recombinant human CD40 ligand in cancer patients. J Clin Oncol 2001; 19: 3280–3287.

    Article  CAS  Google Scholar 

  25. O’Toole CM, Povey S, Hepburn P, Franks LM . Identity of some human bladder cancer cell lines. Nature 1983; 301: 429–430.

    Article  Google Scholar 

  26. Marshall CJ, Franks LM, Carbonell AW . Markers of neoplastic transformation in epithelial cell lines derived from human carcinomas. J Natl Cancer Inst 1977; 58: 1743–1751.

    Article  CAS  Google Scholar 

  27. Dzojic H, Loskog A, Totterman TH, Essand M . Adenovirus-mediated CD40 ligand therapy induces tumor cell apoptosis and systemic immunity in the TRAMP-C2 mouse prostate cancer model. Prostate 2006; 66: 831–838.

    Article  CAS  Google Scholar 

  28. Eliopoulos AG, Kerr DJ, Herod J, Hodgkins L, Krajewski S, Reed JC et al. The control of apoptosis and drug resistance in ovarian cancer: influence of p53 and bcl-2. Oncogene 1995; 11: 1217–1228.

    CAS  PubMed  Google Scholar 

  29. Slinker BK . The statistics of synergism. J Mol Cell Cardiol 1998; 30: 723–731.

    Article  CAS  Google Scholar 

  30. Georgopoulos NT, Steele LP, Thomson MJ, Selby PJ, Southgate J, Trejdosiewicz LK . A novel mechanism of CD40-induced apoptosis of carcinoma cells involving TRAF3 and JNK/AP-1 activation. Cell Death Differ 2006; 13: 1789–1801.

    Article  CAS  Google Scholar 

  31. Kim CY, Jeong M, Mushiake H, Kim BM, Kim WB, Ko JP et al. Cancer gene therapy using a novel secretable trimeric TRAIL. Gene Ther 2006; 13: 330–338.

    Article  CAS  Google Scholar 

  32. Suda T, Hashimoto H, Tanaka M, Ochi T, Nagata S . Membrane Fas ligand kills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing. J Exp Med 1997; 186: 2045–2050.

    Article  CAS  Google Scholar 

  33. Schneider P, Holler N, Bodmer J-L, Hahne M, Frei K, Fontana A et al. Conversion of membrane-bound Fas (CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity. J Exp Med 1998; 187: 1205–1213.

    Article  CAS  Google Scholar 

  34. Tanaka M, Itai T, Adachi M, Nagata S . Downregulation of Fas ligand by shedding. Nature Med 1998; 4: 31–36.

    Article  CAS  Google Scholar 

  35. Matthies KM, Newman JL, Hodzic A, Wingett DG . Differential regulation of soluble and membrane CD40L proteins in T cells. Cell Immunol 2006; 241: 47–58.

    Article  CAS  Google Scholar 

  36. Knox PG, Milner AE, Green NK, Eliopoulos AG, Young LS . Inhibition of metalloproteinase cleavage enhances the cytotoxicity of fas ligand. J Immunol 2003; 170: 677–685.

    Article  CAS  Google Scholar 

  37. Matsuura JE, Morris AE, Ketchem RR, Braswell EH, Klinke R, Gombotz WR et al. Biophysical characterization of a soluble CD40 ligand (CD154) coiled-coil trimer: evidence of a reversible acid-denatured molten globule. Arch Biochem Biophys 2001; 392: 208–218.

    Article  CAS  Google Scholar 

  38. Lee JY, Huerta-Yepez S, Vega M, Baritaki S, Spandidos DA, Bonavida B . The NO TRAIL to YES TRAIL in cancer therapy (review). Int J Oncol 2007; 31: 685–691.

    CAS  PubMed  Google Scholar 

  39. Callard RE, Armitage RJ, Fanslow WC, Spriggs MK . CD40 ligand and its role in X-linked hyper-IgM syndrome. Immunol Today 1993; 14: 559–564.

    Article  CAS  Google Scholar 

  40. Hayward AR, Levy J, Facchetti F, Notarangelo L, Ochs HD, Etzioni A et al. Cholangiopathy and tumours of the pancreas, liver and biliary tree in boys with X-linked immunodeficiency with hyper-IgM. J Immunol 1997; 158: 977–983.

    CAS  PubMed  Google Scholar 

  41. van Mierlo GJ, den Boer AT, Medema JP, van der Voort EI, Fransen MF, Offringa R et al. CD40 stimulation leads to effective therapy of CD40(−) tumors through induction of strong systemic cytotoxic T lymphocyte immunity. Proc Natl Acad Sci USA 2002; 99: 5561–5566.

    Article  CAS  Google Scholar 

  42. French RR, Chan HTC, Tutt AL, Glennie MJ . CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T cell help. Nat Med 1999; 5: 548–553.

    Article  CAS  Google Scholar 

  43. Khanna R, Cooper L, Kienzle N, Moss DJ, Burrows SR, Khanna KK . Engagement of CD40 antigen with soluble CD40 ligand up-regulates peptide transporter expression and restores endogenous processing function in Burkitt's lymphoma cells. J Immunol 1997; 159: 5782–5785.

    CAS  PubMed  Google Scholar 

  44. Davies CC, Mason J, Wakelam MJ, Young LS, Eliopoulos AG . Inhibition of phosphatidylinositol 3-kinase- and ERK MAPK-regulated protein synthesis reveals the pro-apoptotic properties of CD40 ligation in carcinoma cells. J Biol Chem 2004; 279: 1010–1019.

    Article  CAS  Google Scholar 

  45. Haswell LE, Glennie MJ, Al-Shamkhani A . Analysis of the oligomeric requirement for signaling by CD40 using soluble multimeric forms of its ligand, CD154. Eur J Immunol 2001; 31: 3094–3100.

    Article  CAS  Google Scholar 

  46. Correale P, Aquino A, Giuliani A, Pellegrini M, Micheli L, Cusi MG et al. Treatment of colon and breast carcinoma cells with 5-fluorouracil enhances expression of carcinoembryonic antigen and susceptibility to HLA-A(*)02.01 restricted, CEA-peptide-specific cytotoxic T cells in vitro. Int J Cancer 2003; 104: 437–445.

    Article  CAS  Google Scholar 

  47. Yang S, Haluska FG . Treatment of melanoma with 5-fluorouracil or dacarbazine in vitro sensitizes cells to antigen-specific CTL lysis through perforin/granzyme- and Fas-mediated pathways. J Immunol 2004; 172: 4599–4608.

    Article  CAS  Google Scholar 

  48. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007; 13: 1050–1059.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission FP6 program Apotherapy (EC contract number 037344; http://apotherapy.med.uoc.gr) to AGE and AL, an Association for Cancer Research (AICR, UK) grant to AGE and a kind donation from Mr N Tzimas (Athens, Greece).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A G Eliopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vardouli, L., Lindqvist, C., Vlahou, K. et al. Adenovirus delivery of human CD40 ligand gene confers direct therapeutic effects on carcinomas. Cancer Gene Ther 16, 848–860 (2009). https://doi.org/10.1038/cgt.2009.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.31

Keywords

This article is cited by

Search

Quick links