Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adenovirus-based virotherapy enabled by cellular YB-1 expression in vitro and in vivo

Abstract

We have earlier described the oncolytic adenovirus vector dl520 that was rendered cancer-specific by deletion of the transactivation domain CR3 of the adenoviral E1A13S protein; this deletion causes antitumor activity in drug-resistant cells displaying nuclear YB-1 expression. We hypothesized that the anticancer activity of dl520 could be further improved by introducing the RGD motif in the fiber knob and by deletion of the adenoviral E1B19K protein (Ad-Delo3-RGD). In this study, the in vitro and in vivo antitumor activity of Ad-Delo3-RGD was investigated focussing on two pancreatic cancer cell lines MiaPaCa-2 and BxPC3 alone and in combination with cytotoxic drugs. Furthermore, luciferin-based bioluminescence imaging was established to study the therapeutic response in vivo. In addition, to confirm the specificity of Ad-Delo3-RGD for YB-1 a tetracycline-inducible anti-YB-1 shRNA-expressing cell variant EPG85-257RDB/tetR/YB-1 was used. This TetON regulatable expression system allows us to measure adenoviral replication by real-time PCR in the absence of YB-1 expression. The results confirmed the YB-1 dependency of Ad-Delo3-RGD and showed that Ad-Delo3-RGD has potent activity against human pancreatic cancer cells in vitro and in vivo, which was augmented by the addition of paclitaxel. However, although high replication capacity was measured in vitro and in vivo, complete tumor regression was not achieved, indicating the need for further improvements to treat pancreatic cancer effectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Parato KA, Senger D, Forsyth PA, Bell JC . Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer 2005; 5: 965–976.

    Article  CAS  Google Scholar 

  2. Kasuya H, Takeda S, Nomoto S, Nakao A . The potential of oncolytic virus therapy for pancreatic cancer. Cancer Gene Ther 2005; 12: 725–736.

    Article  CAS  Google Scholar 

  3. Russell SJ, Peng KW . Viruses as anticancer drugs. Trends Pharmacol Sci 2007; 28: 326–333.

    Article  CAS  Google Scholar 

  4. Wu J, Stratford AL, Astanehe A, Dunn SE . YB-1 is a transcription/translation factor that orchestrates the oncogenome by hardwiring signal transduction to gene expression. Translational Oncogenomics 2007; 2: 49–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Holm PS, Bergmann S, Jurchott K, Lage H, Brand K, Ladhoff A et al. YB-1 relocates to the nucleus in adenovirus-infected cells and facilitates viral replication by inducing E2 gene expression through the E2 late promoter. J Biol Chem 2002; 277: 10427–10434.

    Article  CAS  Google Scholar 

  6. Holm PS, Lage H, Bergmann S, Jürchott K, Glockzin G, Bernshausen A et al. Multidrug resistant cancer cells facilitate E1-independent adenoviral replication: impact for cancer gene therapy. Cancer Res 2004; 64: 322–328.

    Article  CAS  Google Scholar 

  7. Glockzin G, Mantwill K, Jürchott K, Bernshausen A, Ladhoff A, Royer HD et al. Characterization of the recombinant adenovirus AdYB-1: Implications for oncolytic vector development. J Virology 2006; 80: 3904–3911.

    Article  CAS  Google Scholar 

  8. Alemany R . Cancer selective adenoviruses. Mol Aspects Med 2007; 28: 42–58.

    Article  CAS  Google Scholar 

  9. Koizumi N, Mizuguchi H, Utoguchi N, Watanabe Y, Hayakawa T. . Generation of fiber-modified adenovirus vectors containing heterologous peptides in both the HI loop and C terminus of the fiber knob. J Gene Med 2003; 5: 267–276.

    Article  CAS  Google Scholar 

  10. Wesseling JG, Bosma PJ, Krasnykh V, Kashentseva EA, Blackwell JL, Reynolds PN et al. Improved gene transfer efficiency to primary and established human pancreatic carcinoma target cells via epidermal growth factor receptor and integrin-targeted adenoviral vectors. Gene Ther 2001; 8: 969–976.

    Article  CAS  Google Scholar 

  11. Sauthoff H, Heitner S, Rom WN, Hay JG . Deletion of the adenoviral E1b-19kD gene enhances tumor cell killing of a replicating adenoviral vector. Hum Gene Ther 2000; 11: 379–388.

    Article  CAS  Google Scholar 

  12. Jounaidi Y, Doloff JC, Waxman DJ . Conditionally replicating adenoviruses for cancer treatment. Curr Cancer Drug Targets 2007; 7: 285–301.

    Article  CAS  Google Scholar 

  13. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. et al. Cancer statistics. CA Cancer J Clin 2007; 57: 43–66.

    Article  Google Scholar 

  14. Mulvihill S, Warren R, Venook A, Adler A, Randlev B, Heise C et al. Safety and feasibility of injection with an E1B-55 kDa gene-deleted, replication-selective adenovirus (ONYX-015) into primary carcinomas of the pancreas: a phase I trial. Gene Ther 2001; 8: 308–315.

    Article  CAS  Google Scholar 

  15. Hecht JR, Bedford R, Abbruzzese JL, Lahoti S, Reid TR, Soetikno RM et al. A phase I/II trial of intratumoral endoscopic ultrasound injection of ONYX-015 with intravenous gemcitabine in unresectable pancreatic carcinoma. Clin Cancer Res 2003; 9: 555–561.

    CAS  PubMed  Google Scholar 

  16. Kaszubiak A, Kupstat A, Muller U, Hausmann R, Holm PS, Lage H . Regulation of MDR1 gene expression in multidrug-resistant cancer cells is independent from YB-1. Biochem Biophys Res Commun 2007; 357: 295–301.

    Article  CAS  Google Scholar 

  17. Saur D, Seidler B, Schneider G, Algül H, Beck R, Senekowitsch-Schmidtke R et al. CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer. Gastroenterology 2005; 129: 1237–1250.

    Article  CAS  Google Scholar 

  18. Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998; 72: 9706–9713.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones N, Shenk T . Isolation of deletion and substitution mutants of adenovirus type 5. Cell 1978; 13: 181–188.

    Article  CAS  Google Scholar 

  20. Peng HH, Wu S, Davis JJ, Wang L, Roth JA, Marini III FC et al. A rapid and efficient method for purification of recombinant adenovirus with arginine-glycine-aspartic acid-modified fibers. Anal Biochem 2006; 354: 140–147.

    Article  CAS  Google Scholar 

  21. Bieler A, Mantwill K, Holzmüller R, Jürchott K, Kaszubiak A, Stark S et al. Impact of radiation therapy on the oncolytic adenovirus dl520: implications on the treatment of glioblastoma. Radiother Oncol 2008; 86: 419–427.

    Article  CAS  Google Scholar 

  22. Mantwill K, Koehler-Vargas N, Bernshausen A, Bieler A, Lage H, Kaszubiak A et al. Inhibition of the multidrug-resistant phenotype by targeting YB-1 with a conditionally oncolytic adenovirus: implications for combinatorial treatment regimen with chemotherapeutic agents. Cancer Res 2006; 66: 7195–7202.

    Article  CAS  Google Scholar 

  23. Evdokimova V, Ovchinnikov LP, Sorensen PH . Y-box binding protein: providing a new angle on translational regulation. Cell Cycle 2006; 5: 1143–1147.

    Article  CAS  Google Scholar 

  24. Lasham A, Moloney S, Hale T, Homer C, Zhang YF, Murison JG et al. The Y-box-binding protein, YB-1, is a potential negative regulator of the p53 tumor suppressor. J Biol Chem 2003; 278: 35516–35523.

    Article  CAS  Google Scholar 

  25. Chen Y, DeWeese T, Dilley J, Zhang Y, Li Y, Ramesh N et al. CV706, a prostate cancer-specific adenovirus variant, in combination with radiotherapy produces synergistic antitumor efficacy without increasing toxicity. Cancer Res 2001; 61: 5453–5460.

    CAS  PubMed  Google Scholar 

  26. Yu DC, Chen Y, Dilley J, Li Y, Embry M, Zhang H et al. Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res 2001; 61: 517–525.

    CAS  Google Scholar 

  27. Nielsen LL, Lipari P, Dell J, Gurnani M, Hajian G et al. Adenovirus-mediated p53 gene therapy and paclitaxel have synergistic efficacy in models of human head and neck, ovarian, prostate, and breast cancer. Clin Cancer Res 1998; 4: 835–846.

    CAS  PubMed  Google Scholar 

  28. AbouEl Hassan MA, Braam SR, Kruyt FA . Paclitaxel and vincristine potentiate adenoviral oncolysis that is associated with cell cycle and apoptosis modulation, whereas they differentially affect the viral life cycle in non-small-cell lung cancer cells. Cancer Gene Ther 2006; 13: 1105–1114.

    Article  CAS  Google Scholar 

  29. Fujita T, Ito K, Izumi H, Kimura M, Sano M, Nakagomi H et al. Increased nuclear localization of transcription factor Y-box protein 1 accompanied by up-regulation of P-glycoprotein in breast cancer pretreated with paclitaxel. Clin Cancer Res 2005; 11: 8837–8844.

    Article  CAS  Google Scholar 

  30. Sorokin AV, Selyutina AA, Skabkin MA, Guryanov SG, Nazimov IV, Richard C et al. Proteasome-mediated cleavage of the Y-box-binding protein 1 is linked to DNA-damage stress response. EMBO 2005; 24: 3602–3612.

    Article  CAS  Google Scholar 

  31. Shiota M, Izumi H, Onitsuka T, Miyamoto N, Kashiwagi E, Kidani A et al. Twist promotes tumor cell growth through YB-1 expression. Cancer Res 2008; 68: 98–105.

    Article  CAS  Google Scholar 

  32. Cheng GZ, Zhang WZ, Sun M, Wang Q, Coppola D, Mansour M et al. Twist is transcriptionally induced by activation of STAT3 and mediates STAT3 oncogenic function. J Biol Chem 2008; 283: 14665–14673.

    Article  CAS  Google Scholar 

  33. Basaki Y, Hosoi F, Oda Y, Fotovati A, Maruyama Y, Oie S et al. Akt-dependent nuclear localization of Y-box-binding protein 1 in acquisition of malignant characteristics by human ovarian cancer cells. Oncogene 2007; 26: 2736–2746.

    Article  CAS  Google Scholar 

  34. To K, Zhao Y, Jiang H, Hu K, Wang M, Wu J et al. The phosphoinositide-dependent kinase-1 inhibitor 2-amino-N-[4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]phenyl]-acetamide (OSU-03012) prevents Y-box binding protein-1 from inducing epidermal growth factor receptor. Mol Pharmacol 2007; 72: 641–652.

    Article  CAS  Google Scholar 

  35. Graff JR, McNulty AM, Hanna KR, Konicek BW, Lynch RL, Bailey SN et al. The protein kinase Cbeta-selective inhibitor, Enzastaurin (LY317615.HCl), suppresses signaling through the AKT pathway, induces apoptosis, and suppresses growth of human colon cancer and glioblastoma xenografts. Cancer Res 2005; 65: 7462–7471.

    Article  CAS  Google Scholar 

  36. Lo HW, Hsu SC, Xia W, Cao X, Shih JY, Wei Y et al. Epidermal Growth Factor Receptor Cooperates with Signal Transducer and Activator of Transcription 3 to Induce Epithelial-Mesenchymal Transition in Cancer Cells via Up-regulation of TWIST Gene Expression. Cancer Res 2007; 67: 9066–9076.

    Article  CAS  Google Scholar 

  37. Ganesh S, Gonzalez-Edick M, Gibbons D, Van Roey M, Jooss K . Intratumoral coadministration of hyaluronidase enzyme and oncolytic adenoviruses enhances virus potency in metastatic tumor models. Clin Cancer Res 2008; 14: 3933–3941.

    Article  CAS  Google Scholar 

  38. Eiselein JE, Biggs ME, Walton JR . Treatment of transplanted murine tumors with an oncolytic virus and cyclophosphamide. Cancer Res 1987; 38: 3817–3822.

    Google Scholar 

  39. Fulci G, Breymann L, Gianni D, Kurozomi K, Rhee SS, Yu J et al. Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune responses. Proc Natl Acad Sci USA 2006; 103: 12873–12878.

    Article  CAS  Google Scholar 

  40. Di Paolo NC, Tuve S, Ni S, Hellström KE, Hellström I, Lieber A . Effect of adenovirus-mediated heat shock protein expression and oncolysis in combination with low-dose cyclophosphamide treatment on antitumor immune responses. Cancer Res 2006; 66: 960–969.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hildegard Kalvelage and Sava Michailidou for technical assistance. This work was supported by grants from BMBF ‘Innovative Therapies of molecular Basis’ to PSH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P S Holm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rognoni, E., Widmaier, M., Haczek, C. et al. Adenovirus-based virotherapy enabled by cellular YB-1 expression in vitro and in vivo. Cancer Gene Ther 16, 753–763 (2009). https://doi.org/10.1038/cgt.2009.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.20

Keywords

This article is cited by

Search

Quick links