Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

DNAzymes to mouse β1 integrin mRNA in vivo: targeting the tumor vasculature and retarding cancer growth

Abstract

Previously, we designed a DNAzyme (β1DE) targeting the human β1 integrin subunit, which efficiently digested the mRNA of the β1 integrin subunit and downregulated β1 integrin expression in endothelial cells. This DNAzyme blocked the adhesion of endothelial cells and abolished their ability to form microcapillary tubes in Matrigel. In our present study, we demonstrate that β1DE effectively inhibited neovascularization in Matrigel plugs (BALB/c mice, n=20) and solid human carcinoma tumors developed in nude mice (BALB/cA nude (nu-/-)-B6.Cg-Foxn1nu) (n=30) using prostate carcinoma cells PC-3 (n=15) and colon adenocarcinoma cells CX1.1 (n=15). When injected intratumorally, it significantly reduced the tumor size and number of microvessels developed by both CX1.1 and PC-3 cells within the 3 weeks of experiment duration. Thus, DNAzymes targeting β1 integrin genes can inhibit multiple key tumorigenic processes in vitro and in vivo and may serve as useful anti-cancer agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Silverman SK . In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res 2005; 33: 6151–6163.

    Article  CAS  Google Scholar 

  2. Santoro SW, Joyce GF . A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA 1997; 94: 4262–4266.

    Article  CAS  Google Scholar 

  3. Cieslak M, Niewiarowska J, Nawrot M, Koziolkiewicz M, Stec WJ, Cierniewski CS . DNAzymes to beta 1 and beta 3 mRNA down-regulate expression of the targeted integrins and inhibit endothelial cell capillary tube formation in fibrin and matrigel. J Biol Chem 2002; 277: 6779–6787.

    Article  CAS  Google Scholar 

  4. Liu C, Cheng R, Sun LQ, Tien P . Suppression of platelet-type 12-lipoxygenase activity in human erythroleukemia cells by an RNA-cleaving DNAzyme. Biochem Biophys Res Commun 2001; 284: 1077–1082.

    Article  CAS  Google Scholar 

  5. Zhang L, Gasper WJ, Stass SA, Ioffe O, Davis M, Mixson AJ . Angiogenic inhibition mediated by a DNAzyme that targets vascular endothelial growth factor receptor 2. Cancer Res 2002; 62: 5463–5469.

    CAS  PubMed  Google Scholar 

  6. Nakata Y, Kim TK, Shetzline S, Gewirtz AM . Nucleic acid modulation of gene expression: approaches for nucleic acid therapeutics against cancer. Crit Rev Eukaryot Gene Expr 2005; 15: 163–182.

    Article  CAS  Google Scholar 

  7. Santiago FS, Lowe HC, Kavurma MM, Chesterman CN, Baker A, Atkins DG et al. New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth factor injury. Nature Med 1999; 5: 1264–1269.

    Article  CAS  Google Scholar 

  8. Fahmy RG, Dass CR, Sun LQ, Chesterman CN, Khachigian LM . Transcription factor Egr-1 supports FGF dependent angiogenesis during neovascularization and tumor growth. Nature Med 2003; 9: 1026–1032.

    Article  CAS  Google Scholar 

  9. Lowe HC, Fahmy RG, Kavurma MM, Baker A, Chesterman CN, Khachigian LM . Catalytic oligodeoxynucleotides define a key regulatory role for early growth response factor-1 in the porcine model of coronary in-stent restenosis. Circ Res 2001; 89: 670–677.

    Article  CAS  Google Scholar 

  10. Iversen PO, Nicolaysen G, Sioud M . DNA enzyme targeting TNF-alpha mRNA improves hemodynamic performance in rats with postinfarction heart failure. Am J Physiol Heart Circ Physiol 2001; 281: H2211–H2217.

    Article  CAS  Google Scholar 

  11. Lowe HC, Chesterman CN, Khachigian LM . Catalytic antisense DNA molecules targeting Egr-1 inhibit neointima formation following permanent ligation of rat common cartoid arteries. Thromb Haemost 2002; 87: 134–140.

    Article  CAS  Google Scholar 

  12. Mercurio AM, Rabinovitz I . Towards a mechanistic understanding of tumor invasion—Lessons from the alpha 6 beta 4 integrin. Semin Cancer Biol 2001; 11: 129–141.

    Article  CAS  Google Scholar 

  13. Trikha M, Zhou Z, Timar J, Raso E, Kennel M, Emmell E et al. Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res 2002; 62: 2824–2833.

    CAS  PubMed  Google Scholar 

  14. Brooks PC, Strömblad S, Klemke R, Visscher D, Sarkar FH, Cheresh DA . Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 1995; 96: 1815–1822.

    Article  CAS  Google Scholar 

  15. Koivisto L, Heino J, Hakkinen L, Larjava H . The size of the intracellular beta 1-integrin precursor pool regulates maturation of beta 1-integrin subunit and associated alpha-subunits. Biochem J 1994; 300: 771–779.

    Article  CAS  Google Scholar 

  16. Saelman EU, Keely PJ, Santoro SA . Loss of MDCK cell alpha 2 beta 1 integrin expression results in reduced cyst formation, failure of hepatocyte growth factor/scatter factor-induced branching morphogenesis, and increased apoptosis. J Cell Sci 1995; 108: 3531–3540.

    CAS  PubMed  Google Scholar 

  17. Eliceiri BP, Cheresh DA . The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 1999; 103: 1227–1230.

    Article  CAS  Google Scholar 

  18. Dallabrida SM, DeSouza MA, Farrell DH . Expression of antisense to integrin subunit beta 3 inhibits microvascular endothelial cell capillary tube formation in fibrin. J Biol Chem 2000; 275: 32281–32288.

    Article  CAS  Google Scholar 

  19. Eble JA . Collagen-binding integrins as pharmaceutical targets. Curr Pharm Des 2005; 1: 867–880.

    Article  Google Scholar 

  20. Heyder C, Gloria-Maercker E, Hatzmann W, Niggemann B, Zänker KS, Dittmar T . Role of the beta1-integrin subunit in the adhesion, extravasation and migration of T24 human bladder carcinoma cells. Clin Exp Metastasis 2005; 22: 99–106.

    Article  CAS  Google Scholar 

  21. Sabherwal Y, Rothman VL, Dimitrov S, L'Heureux DZ, Marcinkiewicz Z, Sharma M et al. Integrin alpha2beta1 mediates the anti-angiogenic and anti-tumor activities of angiocidin, a novel tumor-associated protein. Exp Cell Res 2006; 312: 2443–2453.

    Article  CAS  Google Scholar 

  22. Ise H, Sugihara N, Negishi N, Nikaido T, Akaike T . Low asialoglycoprotein receptor expression as markers for highly proliferative potential hepatocytes. Biochem Biophys Res Commun 2001; 285: 172–182.

    Article  CAS  Google Scholar 

  23. Hodgkinson CP, Wright MC, Paine AJ . Fibronectin-mediated hepatocyte shape change reprograms cytochrome P450 2C11 gene expression via an integrin-signaled induction of ribonuclease activity. Mol Pharmacol 2000; 58: 976–981.

    Article  CAS  Google Scholar 

  24. Yuan ST, Hu XQ, Lu JP, KeiKi H, Zhai WR, Zhang YE . Changes of integrin expression in rat hepatocarcinogenesis induced by 3′-Me-DAB. World J Gastroenterol 2000; 6: 231–233.

    Article  CAS  Google Scholar 

  25. Schaffert CS, Sorrell MF, Tuma DJ . Expression and cytoskeletal association of integrin subunits is selectively increased in rat perivenous hepatocytes after chronic ethanol administration. Alcohol Clin Exp Res 2001; 25: 1749–1757.

    Article  CAS  Google Scholar 

  26. Giannelli G, Bergamini C, Fransvea E, Marinosci F, Quaranta V, Antonaci S . Human hepatocellular carcinoma (HCC) cells require both alpha3beta1 integrin and matrix metalloproteinases activity for migration and invasion. Lab Invest 2001; 81: 613–627.

    Article  CAS  Google Scholar 

  27. Kawakami-Kimura N, Narita T, Ohmori K, Yoneda T, Matsumoto K, Nakamura T et al. Involvement of hepatocyte growth factor in increased integrin expression on HepG2 cells triggered by adhesion to endothelial cells. Br J Cancer 1997; 75: 47–53.

    Article  CAS  Google Scholar 

  28. Torimura T, Ueno T, Kin M, Harad R, Nakamura T, Sakamoto M et al. Laminin deposition to type IV collagen enhances haptotaxis, chemokinesis, and adhesion of hepatoma cells through beta1-integrins. J Hepatol 2001; 35: 245–253.

    Article  CAS  Google Scholar 

  29. Kagami S, Kuhara T, Yasutomo K, Okada K, Loster K, Reutter W et al. Transforming growth factor-ß (TGF-ß) stimulates the expression of β1 integrins and adhesion by rat mesangial cells. Exp Cell Res 1996; 229: 1–6.

    Article  CAS  Google Scholar 

  30. Smida Rezgui S, Honore S, Rognoni JB, Martin PM, Penel C . Up-regulation of α2ß1 integrin cell-surface expression protects A431 cells from epidermal growth factor-induced apoptosis. Int J Cancer 2000; 87: 360–367.

    Article  CAS  Google Scholar 

  31. Cierniewski CS, Babinska A, Swiatkowska M, Wilczynska M, Okruszek A, Stec W . Inhibition by modified oligodeoxynucleotides of the expression of type-1 plasminogen activator inhibitor in human endothelial cells. Eur J Biochem 2000; 227: 494–499.

    Article  Google Scholar 

  32. Stephens LE, Sutherland AE, Klimanskaya IV, Andrieux A, Meneses J, Pedersen RA et al. Deletion of beta 1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev 1995; 9: 1883–1895.

    Article  CAS  Google Scholar 

  33. Reddy KB, Bialkowska K, Fox JEB . Dynamic Modulation of Cytoskeletal Proteins Linking Integrins to Signaling Complexes in Spreading Cells. Role of skelemin in initial integrin-induced spreading. J Biol Chem 2001; 276: 28300–28308.

    Article  CAS  Google Scholar 

  34. Fassler R, Pfaff M, Murphy J, Noegel AA, Johansson S, Timpl R et al. Lack of beta 1 integrin gene in embryonic stem cells affects morphology, adhesion, and migration but not integration into the inner cell mass of blastocysts. J Cell Biol 1995; 128: 979–988.

    Article  CAS  Google Scholar 

  35. Bloch W, Forsberg E, Lentini S, Brakebusch C, Martin K, Krell HW et al. b1 integrin is essential for teratoma growth and angiogenesis. J Cell Biol 1997; 139: 265–278.

    Article  CAS  Google Scholar 

  36. Enenstein J, Waleh NS, Kramer RH . Basic FGF and TGF-b differentially modulate integrin expression of human microvascular endothelial cells. Exp Cell Res 1992; 203: 499–503.

    Article  CAS  Google Scholar 

  37. Whelan MC, Senger DR . Collagen I initiates endothelial cell morphogenesis by inducing actin polymerization through suppression of cyclic AMP and protein kinase A. J Biol Chem 2003; 278: 327–334.

    Article  CAS  Google Scholar 

  38. Max R, Gerritsen RR, Nooijen PT, Goodman SL, Sutter A, Keilholz U et al. Immunohistochemical analysis of integrin alpha vbeta3 expression on tumor-associated vessels of human carcinomas. Int J Cancer 1997; 71: 320–324.

    Article  CAS  Google Scholar 

  39. Sepp NT, Li L-J, Lee KH, Brown EJ, Caughman SW, Lawley TJ et al. Basic fibroblast growth factor increases expression of the avb3 integrin complex on human microvascular endothelial cells. J Invest Dermatol 1994; 103: 295–299.

    Article  CAS  Google Scholar 

  40. Mizejewski GJ . Role of integrins in cancer: survey of expression patterns. Proc Soc Exp Biol Med 1999; 222: 124–138.

    Article  CAS  Google Scholar 

  41. Hood JD, Cheresh DA . Role of integrins in cell invasion and migration. Nat Rev Cancer 2002; 22: 91–100.

    Article  Google Scholar 

  42. Felding-Habermann B . Integrin adhesion receptors in tumor metastasis. Clin Exp Metastasis 2003; 20: 203–213.

    Article  CAS  Google Scholar 

  43. Rosano L, Spinella F, Di CV, Dedhar S, Nicotra MR, Natali PG et al. Integrin-linked kinase functions as a downstream mediator of endothelin-1 to promote invasive behavior in ovarian carcinoma. Mol Cancer Ther 2006; 5: 833–842.

    Article  CAS  Google Scholar 

  44. Zhang G, Luo X, Sumithran E, Pua VS, Barnetson RS, Halliday GM et al. Squamous cell carcinoma growth in mice and in culture is regulated by c-Jun and its control of matrix metalloproteinase-2 and -9 expression. Oncogene 2006; 25: 7260–7266.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the project N401 1217 33 from the Polish Ministry of Science and Higher Education and by Projects 502-16-650 and 502-16-201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C S Cierniewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niewiarowska, J., Sacewicz, I., Wiktorska, M. et al. DNAzymes to mouse β1 integrin mRNA in vivo: targeting the tumor vasculature and retarding cancer growth. Cancer Gene Ther 16, 713–722 (2009). https://doi.org/10.1038/cgt.2009.13

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2009.13

Keywords

This article is cited by

Search

Quick links