Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Combined silencing of K-ras and Akt2 oncogenes achieves synergistic effects in inhibiting pancreatic cancer cell growth in vitro and in vivo

Abstract

Cancer is a complex disease involving multiple oncogenes with diverse actions. Inhibiting only one oncogene is unlikely to eliminate the malignancy of cancer cells. The goal of this study was to investigate whether synergistic effects can be achieved by combined silencing of two oncogenes, K-ras and Akt2, which are key players in the Ras/MAPK and PI3K/Akt signaling pathways. The pancreatic cancer cell line, Panc-1, was selected for these studies as it has elevated expression of K-ras and Akt2. Compared with inhibiting each oncogene alone, simultaneously silencing the two oncogenes with RNA interference (RNAi) more effectively inhibited Panc-1 cell proliferation and colony formation, induced a significantly higher percentage of apoptosis and resulted in greater inhibition of c-myc expression in vitro. Furthermore, when delivered by polyethyleneimine into Panc-1 tumors in nude mice, RNAi simultaneously targeting K-ras and Akt2 inhibited tumor growth more efficiently than RNAi targeting the individual oncogenes. Therefore, RNAi simultaneously silencing the oncogenes K-ras and Akt2 may offer potential opportunities for pancreatic cancer gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  Google Scholar 

  2. Greenlee RT, Hill-Harmon MB, Murray T, Thun M . Cancer statistics. CA Cancer J Clin 2001; 51: 15–36.

    Article  CAS  Google Scholar 

  3. Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 2004; 350: 1200–1210.

    Article  CAS  Google Scholar 

  4. Li D, Xie K, Wolff R, Abbruzzese JL . Pancreatic cancer. Lancet 2004; 363: 1049–1057.

    Article  CAS  Google Scholar 

  5. Talar-Wojnarowska R, Malecka-Panas E . Molecular pathogenesis of pancreatic adenocarcinoma: potential clinical implications. Med Sci Monit 2006; 12: 186–193.

    Google Scholar 

  6. Yoshida T, Ohnami S, Aoki K . Development of gene therapy to target pancreatic cancer. Cancer Sci 2004; 95: 283–289.

    Article  CAS  Google Scholar 

  7. Saad ED, Hoff PM . Molecular-targeted agents in pancreatic cancer. Cancer Control 2004; 11: 32–38.

    Article  Google Scholar 

  8. Lim K, Christopher M . Reduction in the requirement of oncogenic Ras signaling to activation of PI3K/AKT pathway during tumor maintenance. Cancer cell 2005; 8: 381–392.

    Article  CAS  Google Scholar 

  9. Michl P, Downward J . Mechanisms of disease: PI3K/AKT signaling in gastrointestinal cancers. Z Gastroenterol 2005; 43: 1133–1139.

    Article  CAS  Google Scholar 

  10. Ruggeri BA, Huang L, Wood M, Cheng JQ, Testa JR . Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas. Mol Carcinog 1998; 21: 81–86.

    Article  CAS  Google Scholar 

  11. Chen J, Liu TH, Guo XY, Ye SF . Two new human exocrine pancreatic adenocarcinoma cell lines in vitro and in vivo. Chin Med J (Engl) 1990; 103: 369–375.

    CAS  Google Scholar 

  12. Arens N, Gandhari M, Bleyl U, Hildenbrand R . In vitro suppression of urokinase plasminogen activator in breast cancer cells—a comparison of two antisense strategies. Int J Oncol 2005; 26: 113–119.

    CAS  PubMed  Google Scholar 

  13. D'Alessio S, Margheri F, Pucci M, Del Rosso A, Monia BP, Bologna M et al. Antisense oligodeoxynucleotides for urokinase-plasminogen activator receptor have anti-invasive and anti-proliferative effects in vitro and inhibit spontaneous metastases of human melanoma in mice. Int J Cancer 2004; 110: 125–133.

    Article  CAS  Google Scholar 

  14. Yang L, Dan HC . Akt/protein kinase b signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res 2004; 64: 4394–4399.

    Article  CAS  Google Scholar 

  15. Cheng JH, Ruggerit B . Amplification of AKT2 in human pancreatic cancer cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci USA 1996; 93: 3636–3641.

    Article  CAS  Google Scholar 

  16. Cohen SJ, Ho L, Ranganathan S, Abbruzzese JL, Alpaugh RK, Beard M et al. Phase II and pharmacodynamic study of the farnesyltransferase inhibitor R115777 as initial therapy inpatients with metastatic pancreatic adenocarcinoma. J Clin Oncol 2003; 21: 1301–1306.

    Article  CAS  Google Scholar 

  17. Vignot S, Faivre S . mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol 2005; 16: 525–537.

    Article  CAS  Google Scholar 

  18. Schweinitz A, Steinmetzer T, Banke IJ, Arlt MJ, Stürzebecher A, Schuster O et al. Design of novel and selective inhibitors of urokinase-type plasminogen activator with improved pharmacokinetic properties for use as antimetastatic agents. J Biol Chem 2004; 279: 33613–33622.

    Article  CAS  Google Scholar 

  19. D'Alessio S, Margheri F, Pucci M, Del Rosso A, Monia BP, Bologna M et al. Antisense oligodeoxynucleotides for urokinase-plasminogen activator receptor have anti-invasive and anti-proliferative effects in vitro and inhibit spontaneous metastases of human melanoma in mice. Int J Cancer 2004; 110: 125–133.

    Article  CAS  Google Scholar 

  20. Lin Z, Nuo Y . Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun 2003; 30: 1169–1178.

    Google Scholar 

  21. Kaiyi L, Shiaw FB . Use of RNA interference to target cyclin E-overexpressing hepatocellular carcinoma. Cancer Res 2003; 63: 3593–3597.

    Google Scholar 

  22. Bondar VM, Sweeney-Gotsch B, Andreeff M, Mills GB, McConkey DJ . Inhibition of the phosphatidylinositol 3′-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol Cancer Ther 2002; 1: 989–997.

    CAS  PubMed  Google Scholar 

  23. Friess H, Kleeff J, Korc M, Büchler MW . Molecular aspects of pancreatic cancer and future perspectives. Dig Surg 1999; 16: 281–290.

    Article  CAS  Google Scholar 

  24. Reddy SA . Signaling pathways in pancreatic cancer. Cancer J 2001; 7: 274–286.

    CAS  PubMed  Google Scholar 

  25. Asano T, Yao Y, Zhu J, Li D, Abbruzzese JL, Reddy SA . The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells. Oncogene 2004; 23: 8571–8580.

    Article  CAS  Google Scholar 

  26. Maira SM, Galetic I, Brazil DP, Kaech S, Ingley E, Thelen M et al. Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science 2001; 294: 374–380.

    Article  CAS  Google Scholar 

  27. Peneul E, Martin GS . Tranformation by V-src: Ras-MAPK and PI3K-mTOR mediated parallel pathways. Mol Biol Cell 1999; 10: 1693–1703.

    Article  Google Scholar 

  28. Edwards LA, Verreault M, Thiessen B, Dragowska WH, Hu Y, Yeung JH et al. Combined inhibition of the phosphatidylinositol 3-kinase/Akt and Ras/mitogen-activated protein kinase pathways results in synergistic effects in glioblastoma cells. Mol Cancer Ther 2006; 5: 645–654.

    Article  CAS  Google Scholar 

  29. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ . Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 1995; 80: 285–291.

    Article  CAS  Google Scholar 

  30. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME . Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and independent mechanisms. Science 1999; 286: 1358–1362.

    Article  CAS  Google Scholar 

  31. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ . Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996; 87: 619–628.

    Article  CAS  Google Scholar 

  32. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231–241.

    Article  CAS  Google Scholar 

  33. She Q, Solit D . The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 2005; 10: 287–297.

    Article  Google Scholar 

  34. Steiner P, Rudolph B, Müller D, Eilers M . The functions of Myc in cell cycle progression and apoptosis. Prog Cell Cycle Res 1996; 2: 73–82.

    Article  CAS  Google Scholar 

  35. Nagy A, Kozma L, Kiss I, Ember I, Takacs I, Hajdu J et al. Copy number of cancer genes predict tumor grade and survival of pancreatic cancer patients. Anticancer Res 2001; 21: 1321–1325.

    CAS  PubMed  Google Scholar 

  36. Schleger C, Verbeke C, Hildenbrand R, Zentgraf H, Bleyl U . c-MYC activation in primary and metastatic ductal adenocarcinoma of the pancreas: incidence, mechanisms, and clinical significance. Mod Pathol 2002; 15: 462–469.

    Article  CAS  Google Scholar 

  37. Henriksson M, Bakardjiev A, Klein G, Lüscher B . Phosphorylation sites mapping in the N-terminal domain of c-myc modulate its transforming potential. Oncogene 1993; 8: 3199–3209.

    CAS  PubMed  Google Scholar 

  38. Gregory MA, Qi Y, Hann SR . Phosphorylation by glycogen synthase kinase-3 controls c-myc proteolysis and subnuclear localization. J Biol Chem 2003; 278: 51606–51612.

    Article  CAS  Google Scholar 

  39. Sears RC . The life cycle of C-myc: from synthesis to degradation. Cell Cycle 2004; 3: 1133–1137.

    Article  CAS  Google Scholar 

  40. Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR . Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 2000; 14: 2501–2514.

    Article  CAS  Google Scholar 

  41. Fabbrini MS, Carpani D, Bello-Rivero I, Soria MR . The amino-terminal fragment of human urokinase directs a recombinant chimeric toxin to target cells: internalization is toxin mediated. FASEB J 1997; 11: 1169–1176.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T H Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., Liang, Z., Ren, X. et al. Combined silencing of K-ras and Akt2 oncogenes achieves synergistic effects in inhibiting pancreatic cancer cell growth in vitro and in vivo. Cancer Gene Ther 16, 227–236 (2009). https://doi.org/10.1038/cgt.2008.82

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.82

Keywords

Search

Quick links