Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chimeric form of tumor necrosis factor-α has enhanced surface expression and antitumor activity

Abstract

Tumor necrosis factor (TNF)-α is a type-II transmembrane protein that is cleaved by TNF-α-converting enzyme (TACE/ADAM-17) to release soluble TNF, a cytokine with potent antitumor properties whose use in clinical applications is limited by its severe systemic toxicity. We found that human cells transfected with vectors encoding TNF without the TACE cleavage site (ΔTACE-TNF) still released functional cytokine at substantial levels that varied between transfected cell lines of different tissue types. Vectors encoding membrane-associated domains of CD154, another TNF-family protein, conjoined with the carboxyl-terminal domain of TNF, directed higher-level surface expression of a functional TNF that, in contrast to ΔTACE-TNF, was resistant to cleavage in all cell types. Furthermore, adenovirus vectors encoding CD154-TNF had significantly greater in vivo biological activity in inducing regression of established, syngeneic tumors in mice than adenovirus vectors encoding TNF, and lacked toxicity associated with soluble TNF. As such, CD154-TNF is a novel TNF that appears superior for treatment of tumors in which high-level local expression of TNF is desired.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B . An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 1975; 72: 3666–3670.

    Article  CAS  Google Scholar 

  2. Spriggs DR, Sherman ML, Frei III E, Kufe DW . Clinical studies with tumour necrosis factor. Ciba Found Symp 1987; 131: 206–227.

    CAS  PubMed  Google Scholar 

  3. Blick M, Sherwin SA, Rosenblum M, Gutterman J . Phase I study of recombinant tumor necrosis factor in cancer patients. Cancer Res 1987; 47: 2986–2989.

    CAS  PubMed  Google Scholar 

  4. Selby P, Hobbs S, Viner C, Jackson E, Jones A, Newell D et al. Tumour necrosis factor in man: clinical and biological observations. Br J Cancer 1987; 56: 803–808.

    Article  CAS  Google Scholar 

  5. Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997; 385: 729–733.

    Article  CAS  Google Scholar 

  6. Moss ML, Jin SL, Milla ME, Bickett DM, Burkhart W, Carter HL et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 1997; 385: 733–736.

    Article  CAS  Google Scholar 

  7. Decoster E, Vanhaesebroeck B, Vandenabeele P, Grooten J, Fiers W . Generation and biological characterization of membrane-bound, uncleavable murine tumor necrosis factor. J Biol Chem 1995; 270: 18473–18478.

    Article  CAS  Google Scholar 

  8. Perez C, Albert I, DeFay K, Zachariades N, Gooding L, Kriegler M . A nonsecretable cell surface mutant of tumor necrosis factor (TNF) kills by cell-to-cell contact. Cell 1990; 63: 251–258.

    Article  CAS  Google Scholar 

  9. Mueller C, Corazza N, Trachsel-Loseth S, Eugster HP, Bühler-Jungo M, Brunner T et al. Noncleavable transmembrane mouse tumor necrosis factor-alpha (TNFalpha) mediates effects distinct from those of wild-type TNFalpha in vitro and in vivo. J Biol Chem 1999; 274: 38112–38118.

    Article  CAS  Google Scholar 

  10. Li Q, Li L, Shi W, Jiang X, Xu Y, Gong F et al. Mechanism of action differences in the antitumor effects of transmembrane and secretory tumor necrosis factor-alpha in vitro and in vivo. Cancer Immunol Immunother 2006; 55: 1470–1479.

    Article  CAS  Google Scholar 

  11. Grell M, Douni E, Wajant H, Löhden M, Clauss M, Maxeiner B et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 1995; 83: 793–802.

    Article  CAS  Google Scholar 

  12. Killar L, White J, Black R, Peschon J . Adamalysins. A family of metzincins including TNF-alpha converting enzyme (TACE). Ann NY Acad Sci 1999; 878: 442–452.

    Article  CAS  Google Scholar 

  13. Mendoza RB, Cantwell MJ, Kipps TJ . Immunostimulatory effects of a plasmid expressing CD40 ligand (CD154) on gene immunization. J Immunol 1997; 159: 5777–5781.

    CAS  PubMed  Google Scholar 

  14. Flick DA, Gifford GE . Comparison of in vitro cell cytotoxic assays for tumor necrosis factor. J Immunol Methods 1984; 68: 167–175.

    Article  CAS  Google Scholar 

  15. Pietravalle F, Lecoanet-Henchoz S, Aubry JP, Elson G, Bonnefoy JY, Gauchat JF . Cleavage of membrane-bound CD40 ligand is not required for inducing B cell proliferation and differentiation. Eur J Immunol 1996; 26: 725–728.

    Article  CAS  Google Scholar 

  16. Szlosarek PW, Balkwill FR . Tumour necrosis factor alpha: a potential target for the therapy of solid tumours. Lancet Oncol 2003; 4: 565–573.

    Article  CAS  Google Scholar 

  17. Mocellin S, Rossi CR, Pilati P, Nitti D . Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev 2005; 16: 35–53.

    Article  CAS  Google Scholar 

  18. Chen G, Goeddel DV . TNF-R1 signaling: a beautiful pathway. Science 2002; 296: 1634–1635.

    Article  CAS  Google Scholar 

  19. Ranheim EA, Kipps TJ . Tumor necrosis factor-alpha facilitates induction of CD80 (B7-1) and CD54 on human B cells by activated T cells: complex regulation by IL-4, IL-10, and CD40 L. Cell Immunol 1995; 161: 226–235.

    Article  CAS  Google Scholar 

  20. Armitage RJ . Tumor necrosis factor receptor superfamily members and their ligands. Curr Opin Immunol 1994; 6: 407–413.

    Article  CAS  Google Scholar 

  21. Ryffel B, Mihatsch MJ . TNF receptor distribution in human tissues. Int Rev Exp Pathol 1993; 34 (Part B): 149–156.

    Article  Google Scholar 

  22. Vrouenraets BC, Klaase JM, Nieweg OE, Kroon BB . Toxicity and morbidity of isolated limb perfusion. Semin Surg Oncol 1998; 14: 224–231.

    Article  CAS  Google Scholar 

  23. Lienard D, Ewalenko P, Delmotte JJ, Renard N, Lejeune FJ . High-dose recombinant tumor necrosis factor alpha in combination with interferon gamma and melphalan in isolation perfusion of the limbs for melanoma and sarcoma. J Clin Oncol 1992; 10: 52–60.

    Article  CAS  Google Scholar 

  24. Vrouenraets BC, Kroon BB, Ogilvie AC, van Geel AN, Nieweg OE, Swaak AJ et al. Absence of severe systemic toxicity after leakage-controlled isolated limb perfusion with tumor necrosis factor-alpha and melphalan. Ann Surg Oncol 1999; 6: 405–412.

    Article  CAS  Google Scholar 

  25. Zimmermann VS, Bondanza A, Rovere-Querini P, Colombo B, Sacchi A, Fascio U et al. Characterisation of functional biotinylated TNF-alpha targeted to the membrane of apoptotic melanoma cells. J Immunol Methods 2003; 276: 79–87.

    Article  CAS  Google Scholar 

  26. Halin C, Gafner V, Villani ME, Borsi L, Berndt A, Kosmehl H et al. Synergistic therapeutic effects of a tumor targeting antibody fragment, fused to interleukin 12 and to tumor necrosis factor alpha. Cancer Res 2003; 63: 3202–3210.

    CAS  Google Scholar 

  27. Bauer S, Adrian N, Williamson B, Panousis C, Fadle N, Smerd J et al. Targeted bioactivity of membrane-anchored TNF by an antibody-derived TNF fusion protein. J Immunol 2004; 172: 3930–3939.

    Article  CAS  Google Scholar 

  28. Borsi L, Balza E, Carnemolla B, Sassi F, Castellani P, Berndt A et al. Selective targeted delivery of TNFalpha to tumor blood vessels. Blood 2003; 102: 4384–4392.

    Article  CAS  Google Scholar 

  29. Kircheis R, Ostermann E, Wolschek MF, Lichtenberger C, Magin-Lachmann C, Wightman L et al. Tumor-targeted gene delivery of tumor necrosis factor-alpha induces tumor necrosis and tumor regression without systemic toxicity. Cancer Gene Ther 2002; 9: 673–680.

    Article  CAS  Google Scholar 

  30. Rasmussen H, Rasmussen C, Lempicki M, Durham R, Brough D, King CR et al. TNFerade biologic: preclinical toxicology of a novel adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene. Cancer Gene Ther 2002; 9: 951–957.

    Article  CAS  Google Scholar 

  31. Marr RA, Addison CL, Snider D, Muller WJ, Gauldie J, Graham FL . Tumour immunotherapy using an adenoviral vector expressing a membrane-bound mutant of murine TNF alpha. Gene Ther 1997; 4: 1181–1188.

    Article  CAS  Google Scholar 

  32. Ranheim EA, Kipps TJ . Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. J Exp Med 1993; 177: 925–935.

    Article  CAS  Google Scholar 

  33. Graf D, Muller S, Korthauer U, van Kooten C, Weise C, Kroczek RA . A soluble form of TRAP (CD40 ligand) is rapidly released after T cell activation. Eur J Immunol 1995; 25: 1749–1754.

    Article  CAS  Google Scholar 

  34. Peitsch MC, Jongeneel CV . A 3-D model for the CD40 ligand predicts that it is a compact trimer similar to the tumor necrosis factors. Int Immunol 1993; 5: 233–238.

    Article  CAS  Google Scholar 

  35. Idriss HT, Naismith JH . TNF alpha and the TNF receptor superfamily: structure–function relationship(s). Microsc Res Tech 2000; 50: 184–195.

    Article  CAS  Google Scholar 

  36. Paleolog EM, Delasalle SA, Buurman WA, Feldmann M . Functional activities of receptors for tumor necrosis factor-alpha on human vascular endothelial cells. Blood 1994; 84: 2578–2590.

    CAS  PubMed  Google Scholar 

  37. Stoelcker B, Ruhland B, Hehlgans T, Bluethmann H, Luther T, Mannel DN . Tumor necrosis factor induces tumor necrosis via tumor necrosis factor receptor type 1-expressing endothelial cells of the tumor vasculature. Am J Pathol 2000; 156: 1171–1176.

    Article  CAS  Google Scholar 

  38. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767–811.

    Article  CAS  Google Scholar 

  39. Zimmermann VS, Bondanza A, Monno A, Rovere-Querini P, Corti A, Manfredi AA . TNF-alpha coupled to membrane of apoptotic cells favors the cross-priming to melanoma antigens. J Immunol 2004; 172: 2643–2650.

    Article  CAS  Google Scholar 

  40. Huebner RJ, Rowe WP, Schatten WE, Smith RR, Thomas LB . Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer 1956; 9: 1211–1218.

    Article  CAS  Google Scholar 

  41. Myers AL, Krewet JA, Shah MR . Tumor immunity and prolonged survival following combined adenovirus-HSP72 and CEA-plasmid vaccination. Vaccine 2005; 23: 3565–3571.

    Article  CAS  Google Scholar 

  42. Shimomura K, Manda T, Mukumoto S, Kobayashi K, Nakano K, Mori J . Recombinant human tumor necrosis factor-alpha: thrombus formation is a cause of anti-tumor activity. Int J Cancer 1988; 41: 243–247.

    Article  CAS  Google Scholar 

  43. Watanabe N, Niitsu Y, Umeno H, Kuriyama H, Neda H, Yamauchi N et al. Toxic effect of tumor necrosis factor on tumor vasculature in mice. Cancer Res 1988; 48: 2179–2183.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Mei Li for her help in generating the plasmid and adenovirus constructs. This work was supported in part by a grant (to TJK) from the Alliance for Cancer Gene Therapy and an Award from the National Institutes of Health, PO1-CA081534 for the CLL Research Consortium (CRC). This work was supported in part by 5R37 CA049870 grant from NIH and the Alliance for Cancer Gene Therapy grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T J Kipps.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rieger, R., Whitacre, D., Cantwell, M. et al. Chimeric form of tumor necrosis factor-α has enhanced surface expression and antitumor activity. Cancer Gene Ther 16, 53–64 (2009). https://doi.org/10.1038/cgt.2008.57

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.57

Keywords

This article is cited by

Search

Quick links