Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chimeric adenoviral vector Ad5/F35-mediated APE1 siRNA enhances sensitivity of human colorectal cancer cells to radiotherapy in vitro and in vivo

Abstract

Apurinic/apyrimidinic endonuclease (APE1), a bifunctional AP endonuclease/redox factor, is important in DNA repair and redox signaling, may be associated with radioresistance. Here we investigate whether targeted inhibition of APE1 can sensitize tumor cells to irradiation in vitro and in vivo. We first constructed chimeric adenoviral vector Ad5/F35 carrying human APE1 siRNA (Ad5/F35-APE1 siRNA). The infectivity of chimeric Ad5/F35 to LOVO colon cancer cells was greater than that of Ad5. APE1 was strongly expressed and nuclear factor κB (NF-κB), a downstream molecule of APE1, known as a radioresistance factor, was constitutively active in LOVO cells. Infection of LOVO cells with Ad5/F35-APE1 siRNA resulted in a dose-dependent decrease of APE1 protein and AP endonuclease activity in vitro. Ad5/F35-APE1 siRNA significantly enhanced sensitivity of LOVO cells to irradiation in clonogenic survival assays, associated with increased cell apoptosis. The APE1 expression in LOVO cells was induced by irradiation in a dose-dependent manner, accompanied with the enhancement of DNA-binding activity of NF-κB and Ad5/F35-APE1 siRNA effectively inhibited constitutive and irradiation-induced APE1 expression and NF-κB activation. In a subcutaneous nude mouse colon cancer model, Ad5/F35-APE1 siRNA (5 × 108 IU, intratumoral injection) inhibited the expression of APE1 protein in LOVO xenografts, and significantly enhanced inhibition of tumor growth by irradiation. In conclusion, APE1 may be involved as one of the radioresistance factors, and targeted inhibition of APE1 shows an effective means of enhancing tumor sensitivity to radiotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Andre N, Schmiegel W . Chemoradiotherapy for colorectal cancer. Gut 2005; 54: 1194–1202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sauer R, Becker H, Hohenberger W, Rodel C, Wittekind C, Fietkau R, et al., German Rectal Cancer Study Group. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 2004; 351: 1731–1740.

    Article  CAS  PubMed  Google Scholar 

  3. Sauer R . Adjuvant and neoadjuvant radiotherapy and concurrent radiochemotherapy for rectal cancer. Pathol Oncol Res 2002; 8: 7–17.

    Article  CAS  PubMed  Google Scholar 

  4. Belzile JP, Choudhury SA, Cournoyer D, Chow TY . Targeting DNA repair proteins: a promising avenue for cancer gene therapy. Curr Gene Ther 2006; 6: 111–123.

    Article  CAS  PubMed  Google Scholar 

  5. Madhusudan S, Middleton MR . The emerging role of DNA repair proteins as predictive, prognostic and therapeutic targets in cancer. Cancer Treat Rev 2005; 31: 603–617.

    Article  CAS  PubMed  Google Scholar 

  6. Ding J, Miao ZH, Meng LH, Geng MY . Emerging cancer therapeutic opportunities target DNA-repair systems. Trends Pharmacol Sci 2006; 27: 338–344.

    Article  CAS  PubMed  Google Scholar 

  7. Robson CN, Hickson ID . Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in E. coli xth (exonuclease III) mutants. Nucleic Acids Res 1991; 19: 5519–5523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Demple B, Herman T, Chen DS . Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proc Natl Acad Sci USA 1991; 88: 11450–11454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen DS, Herman T, Demple B . Two distinct human DNA diesterases that hydrolyze 3′-blocking deoxyribose fragments from oxidized DNA. Nucleic Acids Res 1991; 19: 5907–5914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Robson CN, Hochhauser D, Craig R, Rack K, Buckle VJ, Hickson ID . Structure of the human DNA repair gene HAP1 and its localisation to chromosome 14q 11.2-12. Nucleic Acids Res 1992; 20: 4417–4421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Evans AR, Limp-Foster M, Kelley MR . Going APE over ref-1. Mutat Res 2000; 461: 83–108.

    Article  CAS  PubMed  Google Scholar 

  12. Parsons JL, Dianov GL . Monitoring base excision repair proteins on damaged DNA using human cell extracts. Biochem Soc Trans 2004; 32: 962–963.

    Article  CAS  PubMed  Google Scholar 

  13. Shimizu N, Sugimoto K, Tang J, Nishi T, Sato I, Hiramoto M et al. High-performance affinity beads for identifying drug receptors. Nat Biotechnol 2000; 18: 877–881.

    Article  CAS  PubMed  Google Scholar 

  14. Voboril R, Weberova-Voborilova J . Constitutive NF-kappa B activity in colorectal cancer cells: impact on radiation-induced NF-kappaB activity, radiosensitivity, and apoptosis. Neoplasma 2006; 53: 518–523.

    CAS  PubMed  Google Scholar 

  15. Moore DH, Michael H, Tritt R, Parsons SH, Kelley MR . Alterations in the expression of the DNA repair/redox enzyme APE/ref-1 in epithelial ovarian cancers. Clin Cancer Res 2000; 6: 602–609.

    CAS  PubMed  Google Scholar 

  16. Bobola MS, Blank A, Berger MS, Stevens BA, Silber JR . Apurinic/apyrimidinic endonuclease activity is elevated in human adult gliomas. Clin Cancer Res 2001; 7: 3510–3518.

    CAS  PubMed  Google Scholar 

  17. Koukourakis MI, Giatromanolaki A, Kakolyris S, Sivridis E, Georgoulias V, Funtzilas G et al. Nuclear expression of human apurinic/apyrimidinic endonuclease (HAP1/Ref-1) in head-and-neck cancer is associated with resistance to chemoradiotherapy and poor outcome. Int J Radiat Oncol Biol Phys 2001; 50: 27–36.

    Article  CAS  PubMed  Google Scholar 

  18. Herring CJ, West CM, Wilks DP, Davidson SE, Hunter RD, Berry P et al. Levels of the DNA repair enzyme human apurinic/apyrimidinic endonuclease (APE1, APEX, Ref-1) are associated with the intrinsic radiosensitivity of cervical cancers. Br J Cancer 1998; 78: 1128–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Robertson KA, Bullock HA, Xu Y, Tritt R, Zimmerman E, Ulbright TM et al. Altered expression of Ape1/ref-1 in germ cell tumors and overexpression in NT2 cells confers resistance to bleomycin and radiation. Cancer Res 2001; 61: 2220–2225.

    CAS  PubMed  Google Scholar 

  20. Wang D, Luo M, Kelley MR . Human apurinic endonuclease 1 (APE1) expression and prognostic significance in osteosarcoma: enhanced sensitivity of osteosarcoma to DNA damaging agents using silencing RNA APE1 expression inhibition. Mol Cancer Ther 2004; 3: 679–686.

    Article  CAS  PubMed  Google Scholar 

  21. Hemminki A, Kanerva A, Liu B, Wang M, Alvarez RD, Siegal GP et al. Modulation of coxsackie-adenovirus receptor expression for increased adenoviral transgene expression. Cancer Res 2003; 63: 847–853.

    CAS  PubMed  Google Scholar 

  22. Fuxe J, Liu L, Malin S, Philipson L, Collins VP, Pettersson RF . Expression of the coxsackie and adenovirus receptor in human astrocytic tumors and xenografts. Int J Cancer 2003; 103: 723–729.

    Article  CAS  PubMed  Google Scholar 

  23. Yu L, Takenobu H, Shimozato O, Kawamura K, Nimura Y, Seki N et al. Increased infectivity of adenovirus type 5 bearing type 11 or type 35 fibers to human esophageal and oral carcinoma cells. Oncol Rep 2005; 14: 831–835.

    PubMed  Google Scholar 

  24. Gaggar A, Shayakhmetov DM, Lieber A . CD46 is a cellular receptor for group B adenoviruses. Nat Med 2003; 9: 1408–1412.

    Article  CAS  PubMed  Google Scholar 

  25. Marttila M, Persson D, Gustafsson D, Liszewski MK, Atkinson JP, Wadell G et al. CD46 is a cellular receptor for all species B adenoviruses except types 3 and 7. J Virol 2005; 79: 14429–14436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xiang D, Wang D, He Y, Xie J, Zhong Z, Li Z et al. Caffeic acid phenethyl ester induces growth arrest and apoptosis of colon cancer cells via the beta-catenin/T-cell factor signaling. Anticancer Drugs 2006; 17: 753–762.

    Article  CAS  PubMed  Google Scholar 

  27. Joiner MC . Models of radiation cell killing. In: Steel GG (ed). Basic Clinical Radiobiology. Arnolds: London, 1993, pp 40–46.

    Google Scholar 

  28. Zhang L, Torgerson TR, Liu XY, Timmons S, Colosia AD, Hawiger J et al. Preparation of functionally active cell-permeable peptides by single-step ligation of two peptide modules. Proc Natl Acad Sci USA 1998; 95: 9184–9489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nishi T, Shimizu N, Hiramoto M, Sato I, Yamaguchi Y, Hasegawa M et al. Spatial redox regulation of a critical cysteine residue of NF-kappa B in vivo. J Biol Chem 2002; 277: 44548–44556.

    Article  CAS  PubMed  Google Scholar 

  30. Sova P, Ren XW, Ni S, Bernt KM, Mi J, Kiviat N et al. A tumor-targeted and conditionally replicating oncolytic adenovirus vector expressing TRAIL for treatment of liver metastases. Mol Ther 2004; 9: 496–509.

    Article  CAS  PubMed  Google Scholar 

  31. Fishel ML, Kelley MR . The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol Aspects Med 2007; 28: 375–395.

    Article  CAS  PubMed  Google Scholar 

  32. Fan J, Wilson III DM . Protein-protein interactions and posttranslational modifications in mammalian base excision repair. Free Radic Biol Med 2005; 38: 1121–1138.

    Article  CAS  PubMed  Google Scholar 

  33. Chou KM, Cheng YC . An exonucleolytic activity of human apurinic/apyrimidinic endonuclease on 3′ mispaired DNA. Nature 2002; 415: 655–659.

    Article  CAS  PubMed  Google Scholar 

  34. Dyrkheeva NS, Lomzov AA, Pyshnyi DV, Khodyreva SN, Lavrik OI . Efficiency of exonucleolytic action of apurinic/apyrimidinic endonuclease 1 towards matched and mismatched dNMP at the 3′ terminus of different oligomeric DNA structures correlates with thermal stability of DNA duplexes. Biochim Biophys Acta 2006; 1764: 699–706.

    Article  CAS  PubMed  Google Scholar 

  35. Chou KM, Kukhanova M, Cheng YC . A novel action of human apurinic/apyrimidinic endonuclease: excision of L-configuration deoxyribonucleoside analogs from the 3′ termini of DNA. J Biol Chem 2000; 275: 31009–31015.

    Article  CAS  PubMed  Google Scholar 

  36. Tell G, Damante G, Caldwell D, Kelley MR . The intracellular localization of APE1/Ref-1: more than a passive phenomenon? Antioxid Redox Signal 2005; 7: 367–384.

    Article  CAS  PubMed  Google Scholar 

  37. Chen YJ, Liao HF, Tsai TH, Wang SY, Shiao MS . Caffeic acid phenethyl ester preferentially sensitizes CT26 colorectal adenocarcinoma to ionizing radiation without affecting bone marrow radioresponse. Int J Radiat Oncol Biol Phys 2005; 63: 1252–1261.

    Article  CAS  PubMed  Google Scholar 

  38. Yang S, Irani K, Heffron SE, Jurnak F, Meyskens Jr FL . Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1) in human melanoma and identification of the therapeutic potential of resveratrol as an APE/Ref-1 inhibitor. Mol Cancer Ther 2005; 4: 1923–1935.

    Article  CAS  PubMed  Google Scholar 

  39. Raffoul JJ, Banerjee S, Singh-Gupta V, Knoll ZE, Fite A, Zhang H et al. Down-regulation of apurinic/apyrimidinic endonuclease 1/redox factor-1 expression by soy isoflavones enhances prostate cancer radiotherapy in vitro and in vivo. Cancer Res 2007; 67: 2141–2149.

    Article  CAS  PubMed  Google Scholar 

  40. Yang ZZ, Chen XH, Wang D . Experimental study enhancing the chemosensitivity of multiple myeloma to melphalan by using a tissue-specific APE1-silencing RNA expression vector. Clin Lymphoma Myeloma 2007; 7: 296–304.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (no. 30472004, 30670628).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, DB., Chen, ZT., Wang, D. et al. Chimeric adenoviral vector Ad5/F35-mediated APE1 siRNA enhances sensitivity of human colorectal cancer cells to radiotherapy in vitro and in vivo. Cancer Gene Ther 15, 625–635 (2008). https://doi.org/10.1038/cgt.2008.30

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.30

Keywords

This article is cited by

Search

Quick links