Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Allele-specific cancer cell killing in vitro and in vivo targeting a single-nucleotide polymorphism in POLR2A

Abstract

Cancer is one of the diseases for which RNA interference is a potential therapeutic approach. Genes involved in the promotion or maintenance of tumor growth are obvious targets for RNAi. RNAi is also considered an attractive additional approach to conventional chemotherapy for cancer treatment. Moreover, siRNAs have shown a high specificity for their molecular target mRNAs as they can selectively inhibit cancer-promoting genes that differ by a point mutation. Loss of heterozygosity (LOH) reduces genes to hemizygosity in cancer cells and presents an absolute difference between normal and cancer cells. The regions of LOH are usually much larger than the tumor suppressor gene, which is lost, and has been shown to contain genes that are essential for cell survival. Single-nucleotide polymorphisms (SNPs) are the most common type of genetic variation in man. SNPs in essential genes that are frequently affected by LOH can be used as a target for a therapy against cancer cells with LOH. We have designed siRNAs against the gene of the large subunit of RNA polymerase II (POLR2A), a gene located in close proximity to the tumor suppressor gene p53, which frequently shows LOH in cancer cells. It is shown in vitro that siRNA can selectively inhibit POLR2A expression dependent on its genotype. Furthermore, cancer cell proliferation and tumor growth inhibition in nude mice was genotype dependent. We conclude that siRNA can be used for genotype-specific inhibition of tumor growth targeting an SNP in POLR2A in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

ASI:

allele-specific inhibition

DMEM:

Dulbecco's modified Eagle's medium

eEF2α:

elongation factor-2α

LOH:

loss of heterozygosity

ODNs:

antisense oligonucleotides

POLR2A:

large subunit of RNA polymerase II

PVDF:

polyvinylidene fluoride

RNAi:

RNA interference

RPA70:

replication protein A, 70-kDa subunit

SNPs:

single nucleotide polymorphisms

SDS–PAGE:

SDS–polycrylamide gel electrophoresis

References

  1. Leung RK, Whittaker PA . RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 2005; 107: 222–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brummelkamp TR, Bernards R, Agami R . Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002; 2: 243–247.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Z, Jiang G, Yang F, Wang J . Knockdown of mutant K-ras expression by adenovirus-mediated siRNA inhibits the in vitro and in vivo growth of lung cancer cells. Cancer Biol Ther 2006; 5: 1481–1486.

    Article  CAS  PubMed  Google Scholar 

  4. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–811.

    Article  CAS  PubMed  Google Scholar 

  5. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    Article  CAS  PubMed  Google Scholar 

  6. Kim DH, Rossi JJ . Strategies for silencing human disease using RNA interference. Nat Rev Genet 2007; 8: 173–184.

    Article  CAS  PubMed  Google Scholar 

  7. Aigner A . Applications of RNA interference: current state and prospects for siRNA-based strategies in vivo. Appl Microbiol Biotechnol 2007; 76: 9–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lengauer C, Kinzler KW, Vogelstein B . Genetic instabilities in human cancers. Nature 1998; 396: 643–649.

    Article  CAS  PubMed  Google Scholar 

  9. Basilion JP, Schievella AR, Burns E, Rioux P, Olson JC, Monia BP et al. Selective killing of cancer cells based on loss of heterozygosity and normal variation in the human genome: a new paradigm for anticancer drug therapy. Mol Pharmacol 1999; 56: 359–369.

    Article  CAS  PubMed  Google Scholar 

  10. Fluiter K, Housman D, Ten Asbroek AL, Baas F . Killing cancer by targeting genes that cancer cells have lost: allele-specific inhibition, a novel approach to the treatment of genetic disorders. Cell Mol Life Sci 2003; 60: 834–843.

    Article  CAS  PubMed  Google Scholar 

  11. Ten Asbroek AL, Olsen J, Housman D, Baas F, Stanton Jr V . Genetic variation in mRNA coding sequences of highly conserved genes. Physiol Genomics 2001; 5: 113–118.

    Article  CAS  PubMed  Google Scholar 

  12. Fluiter K, ten Asbroek AL, van Groenigen M, Nooij M, Aalders MC, Baas F . Tumor genotype-specific growth inhibition in vivo by antisense oligonucleotides against a polymorphic site of the large subunit of human RNA polymerase II. Cancer Res 2002; 62: 2024–2028.

    CAS  PubMed  Google Scholar 

  13. Abdelgany A, Wood M, Beeson D . Allele-specific silencing of a pathogenic mutant acetylcholine receptor subunit by RNA interference. Hum Mol Genet 2003; 12: 2637–2644.

    Article  CAS  PubMed  Google Scholar 

  14. Ding H, Schwarz DS, Keene A, Affar el B, Fenton L, Xia X et al. Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis. Aging Cell 2003; 2: 209–217.

    Article  CAS  PubMed  Google Scholar 

  15. Martinez LA, Naguibneva I, Lehrmann H, Vervisch A, Tchenio T, Lozano G et al. Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc Natl Acad Sci USA 2002; 99: 14849–14854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miller VM, Gouvion CM, Davidson BL, Paulson HL . Targeting Alzheimer's disease genes with RNA interference: an efficient strategy for silencing mutant alleles. Nucleic Acids Res 2004; 32: 661–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miller VM, Xia H, Marrs GL, Gouvion CM, Lee G, Davidson BL et al. Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci USA 2003; 100: 7195–7200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Du Q, Thonberg H, Wang J, Wahlestedt C, Liang Z . A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res 2005; 33: 1671–1677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schwarz DS, Ding H, Kennington L, Moore JT, Schelter J, Burchard J et al. Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genet 2006; 2: 1307–1318.

    Article  CAS  Google Scholar 

  20. ten Asbroek AL, Fluiter K, van Groenigen M, Nooij M, Baas F . Polymorphisms in the large subunit of human RNA polymerase II as target for allele-specific inhibition. Nucleic Acids Res 2000; 28: 1133–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Church GM, Gilbert W . Genomic sequencing. Proc Natl Acad Sci USA 1984; 81: 1991–1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Duxbury MS, Matros E, Ito H, Zinner MJ, Ashley SW, Whang EE . Systemic siRNA-mediated gene silencing: a new approach to targeted therapy of cancer. Ann Surg 2004; 240: 667–674; discussion 675–676.

    PubMed  PubMed Central  Google Scholar 

  23. Mook OR, Baas F, de Wissel MB, Fluiter K . Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther 2007; 6: 833–843.

    Article  CAS  PubMed  Google Scholar 

  24. Meyer T, Regenass U, Fabbro D, Alteri E, Rosel J, Muller M et al. A derivative of staurosporine (CGP 41 251) shows selectivity for protein kinase C inhibition and in vitro anti-proliferative as well as in vivo anti-tumor activity. Int J Cancer 1989; 43: 851–856.

    Article  CAS  PubMed  Google Scholar 

  25. Kurosawa T, Igarashi S, Nishizawa M, Onodera O . Selective silencing of a mutant transthyretin allele by small interfering RNAs. Biochem Biophys Res Commun 2005; 337: 1012–1018.

    Article  CAS  PubMed  Google Scholar 

  26. Dykxhoorn DM, Schlehuber LD, London IM, Lieberman J . Determinants of specific RNA interference-mediated silencing of human beta-globin alleles differing by a single nucleotide polymorphism. Proc Natl Acad Sci USA 2006; 103: 5953–5958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li Y, Yokota T, Matsumura R, Taira K, Mizusawa H . Sequence-dependent and independent inhibition specific for mutant ataxin-3 by small interfering RNA. Ann Neurol 2004; 56: 124–129.

    Article  CAS  PubMed  Google Scholar 

  28. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE . EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene 2004; 23: 1448–1456.

    Article  CAS  PubMed  Google Scholar 

  29. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE . RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemcitabine. Oncogene 2004; 23: 1539–1548.

    Article  CAS  PubMed  Google Scholar 

  30. Liang Z, Yoon Y, Votaw J, Goodman MM, Williams L, Shim H . Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res 2005; 65: 967–971.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ocker M, Neureiter D, Lueders M, Zopf S, Ganslmayer M, Hahn EG et al. Variants of bcl-2 specific siRNA for silencing antiapoptotic bcl-2 in pancreatic cancer. Gut 2005; 54: 1298–1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dutch Cancer Society, project number 2003-2968 and the Stichting Kindergeneeskundig Kanker Onderzoek.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O R F Mook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mook, O., Baas, F., de Wissel, M. et al. Allele-specific cancer cell killing in vitro and in vivo targeting a single-nucleotide polymorphism in POLR2A. Cancer Gene Ther 16, 532–538 (2009). https://doi.org/10.1038/cgt.2008.104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.104

Keywords

This article is cited by

Search

Quick links