Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Calcium carbonate nanoparticle delivering vascular endothelial growth factor-C siRNA effectively inhibits lymphangiogenesis and growth of gastric cancer in vivo

Abstract

A nonviral gene carrier, calcium carbonate (CaCO3) nanoparticle, was evaluated for efficient in vitro and in vivo delivery of small interfering RNA (siRNA) targeting vascular endothelial growth factor-C (VEGF-C). The chemically synthesized CaCO3 nanoparticle has a 58 nm diameter and +28.6 mV positive surface charge. It is capable of forming a CaCO3 nanoparticle–DNA complex and transferring DNA into targeted cells with high transfection efficiency while effectively protecting the encapsulated DNA from degradation. Furthermore, the CaCO3 nanoparticle–DNA complex has no obvious cytotoxicity for SGC-7901 cells, while a liposome–DNA complex exhibited measurable cytotoxicity. SGC-7901 cells transfected with a VEGF-C-targeted siRNA via CaCO3 nanoparticle exhibit significantly reduced VEGF-C expression as measured by real-time PCR and enzyme-linked immunosorbent assay; whereas no decrease in VEGF-C expression is observed in cells treated by control transfection. Transfection of SGC-7901 cells with VEGF-C siRNA via CaCO3 nanoparticle also dramatically suppresses tumor lymphangiogenesis, tumor growth and regional lymph-node metastasis in subcutaneous xenografts. Significant downregulation of VEGF-C messenger RNA expression in a subcutaneous xenograft derived from VEGF-C siRNA-treated SGC-7901 cells was confirmed by real-time PCR as compared to controls. We conclude that CaCO3 nanoparticle is a novel and nonviral system for effective delivery of siRNA for cancer gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ . Cancer statistics. CA Cancer J Clin 2003; 53: 5–26.

    Article  PubMed  Google Scholar 

  2. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001; 7: 186–191.

    Article  CAS  PubMed  Google Scholar 

  3. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001; 20: 672–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001; 7: 151–152.

    Article  Google Scholar 

  5. Yonemura Y, Endo Y, Fujita H, Fushida S, Ninomiya I, Bandou E et al. Role of vascular endothelial growth factor C expression in the development of lymph node metastasis in gastric cancer. Clin Cancer Res 1999; 5: 1823–1829.

    CAS  PubMed  Google Scholar 

  6. Tsurusaki T, Kanda S, Sakai H, Kanetake H, Saito Y, Alitalo K et al. Vascular endothelial growth factor-C expression in human prostatic carcinoma and its relationship to lymph node metastasis. Br J Cancer 1999; 80: 309–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akagi K, Ikeda Y, Miyazaki M, Abe T, Kinoshita J, Maehara Y et al. Vascular endothelial growth factor-C (VEGF-C) expression in human colorectal cancer tissues. Br J Cancer 2000; 83: 887–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Niki T, Iba S, Tokunou M, Yamada T, Matsuno Y, Hirohashi S . Expression of vascular endothelial growth factors A, B, C, and D and their relationships to lymph node status in lung adenocarcinoma. Clin Cancer Res 2000; 6: 2431–2439.

    CAS  PubMed  Google Scholar 

  9. Gunningham SP, Currie MJ, Han C, Robinson BA, Scott PA, Harris AL et al. The short form of the alternatively spliced flt-4 but not its ligand vascular endothelial growth factor C is related to lymph node metastasis in human breast cancers. Clin Cancer Res 2000; 6: 4278–4286.

    CAS  PubMed  Google Scholar 

  10. Kajita T, Ohta Y, Kimura K, Tamura M, Tanaka Y, Tsunezuka Y et al. The expression of vascular endothelial growth factor C and its receptors in non-small cell lung cancer. Br J Cancer 2001; 85: 255–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hashimoto I, Kodama J, Seki N, Hongo A, Yoshinouchi M, Okuda H et al. Vascular endothelial growth factor-C expression and its relationship to pelvic lymph node status in invasive cervical cancer. Br J Cancer 2001; 85: 93–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kitadai Y, Amioka T, Haruma K, Tanaka S, Yoshihara M, Sumii K et al. Clinicopathological significance of vascular endothelial growth factor (VEGF)-C in human esophageal squamous cell carcinomas. Int J Cancer 2001; 93: 662–666.

    Article  CAS  PubMed  Google Scholar 

  13. McManus MT, Sharp PA . Gene silencing in mammals by small interfering. Nat Rev Genet 2002; 3: 737–747.

    Article  CAS  PubMed  Google Scholar 

  14. Elbashir SM, Harborth J, Weber K, Tuschl T . Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 2002; 26: 199–213.

    Article  CAS  PubMed  Google Scholar 

  15. Hannon GJ . RNA interference. Nature 2002; 418: 244–251.

    Article  CAS  PubMed  Google Scholar 

  16. Shi Y . Mammalian RNAi for the masses. Trends Genet 2003; 19: 9–12.

    Article  PubMed  Google Scholar 

  17. Novina CD, Murray MF, Dykxhoorn DM, Beresford PJ, Riess J, Lee SK et al. siRNA-directed inhibition of HIV-1 infection. Nat Med 2002; 8: 681–686.

    Article  CAS  PubMed  Google Scholar 

  18. Brummelkamp TR, Bernards R, Agami R . Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2002; 2: 243–247.

    Article  CAS  PubMed  Google Scholar 

  19. Blaesé M, Blankenstein T, Brenner M, Cohen-Haguenauer O, Gansbacher B, Russeu S et al. Vectors in cancer therapy: how will they deliver? Cancer Gene Ther 1995; 2: 291–297.

    PubMed  Google Scholar 

  20. Yang Y, Nunes FA, Berenncsi K, Furth EE, Gonczol E, Wilson JM . Cellular immunity to viral antigens limits E1-deleted adenovirus for gene therapy. Proc Natl Acad Sci USA 1994; 91: 4407–4411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Engelhardt JE, Ye X, Doranz B, Wilson JM . Ablation of E2A in recombinant adenoviruses improves transgene persistence and decreases inflammatory response in mouse liver. Proc Natl Acad Sci USA 1994; 91: 6196–6200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tenenbaum L, Lehtonen E, Monahan PE . Evaluation of risks related to the use of adeno-associated virus-based vectors. Curr Gene Ther 2003; 3: 545–565.

    Article  CAS  PubMed  Google Scholar 

  23. Han S, Mahato RI, Sung YK, Kin SW . Development of biomaterials for gene therapy. Mol Ther 2000; 2: 302–317.

    Article  CAS  PubMed  Google Scholar 

  24. Ferrara N . Vascular endothelial growth factor: molecular and biological aspects. Curr Top Microbiol Immunol 1999; 237: 1–30.

    CAS  PubMed  Google Scholar 

  25. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001; 20: 672–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Padera TP, Kadambi A, di Tomaso E, Carreira CM, Brown EB, Boucher Y et al. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 2002; 296: 1811–1812.

    Article  Google Scholar 

  27. Kaipanien A, Korhonen J, Mustonen T, Van Hinsberqh VW, Fang GH, Dumont D et al. Expression of the fms-like tyrosine kinase 4 gene become restricted to lymphatic endothelium during development. Proc Natl Sci USA 1995; 92: 3566–3570.

    Article  Google Scholar 

  28. Li K, Lin SY, Brunicardi FC, Seu P . Use of RNA interference to target cyclin E-overexpressing hepatocellular carcinoma. Cancer Res 2003; 63: 3593–3597.

    CAS  PubMed  Google Scholar 

  29. Wu H, Hait WN, Yang JM . Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res 2003; 63: 1515–1519.

    CAS  PubMed  Google Scholar 

  30. Wannenes F, Ciafre SA, Niola F, Frajese G, Farace MG . Vector-based RNA interference against vascular endothelial growth factor-A significantly limits vascularization and growth of prostate cancer in vivo. Cancer Gene Ther 2005; 12: 926–934.

    Article  CAS  PubMed  Google Scholar 

  31. Lapteva N, Yang AG, Sanders DE, Strube DE, Chen SY . CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Ther 2004; 12: 84–89.

    Article  Google Scholar 

  32. Stege A, Priebsch A, Nieth C, Lage H . Stable and complete overcoming of MDR1/p-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference. Cancer Gene Ther 2004; 11: 696–700.

    Article  Google Scholar 

  33. Xu XM, Wang D, Shen Q, Chen YQ, Wang MH . RNA-mediated gene silencing of the RON receptor tyrosine kinase alters oncogenic phenotypes of human colorectal carcinoma cells. Oncogene 2004; 23: 8464–8474.

    Article  CAS  PubMed  Google Scholar 

  34. Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS . RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene 2004; 23: 8486–8496.

    Article  CAS  PubMed  Google Scholar 

  35. Bigger I, Dubernet C, Couvreur P . Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002; 54: 631–651.

    Article  Google Scholar 

  36. Perez C, Sanchez A, Putnam D, Ting D, Langer R, Alonso MJ . Pol(lactic acid)-poly(ethylene glycol) nanoparticles as new carries for the delivery of plasmid DNA. Control Release 2001; 75: 211–224.

    Article  CAS  Google Scholar 

  37. Liu T, Tang AF, Zhang Gy, Yu Xiang C, Zhang JY, Shu Song P et al. Calcium phosphate nanoparticles as a novel nonviral vector efficiently transfection of DNA in cancer gene therapy. Cancer Biother Radiopharm 2005; 20: 141–149.

    Article  CAS  PubMed  Google Scholar 

  38. Truong-Le VL, Walsh SM, Schweibert E, Mao HQ, Guggino WB, August JT et al. Gene transfer by DNA-gelatin nanospheres. Arch Biochem Biophys 1999; 361: 47–56.

    Article  CAS  PubMed  Google Scholar 

  39. Cohen Y, Levv RJ, Gao J, Fishbein I, Kousae V, Sosnowski S et al. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Therapy 2007; 7: 1896–1905.

    Article  Google Scholar 

  40. Maitra A . Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Rev Mol Diagn 2005; 5: 893–905.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D-j Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Xw., Liu, T., Chen, Yx. et al. Calcium carbonate nanoparticle delivering vascular endothelial growth factor-C siRNA effectively inhibits lymphangiogenesis and growth of gastric cancer in vivo. Cancer Gene Ther 15, 193–202 (2008). https://doi.org/10.1038/sj.cgt.7701122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7701122

Keywords

This article is cited by

Search

Quick links