Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of hepatocarcinoma by systemic delivery of Apoptin gene via the hepatic asialoglycoprotein receptor

Abstract

Specificity is a prerequisite for systemic gene therapy of hepatocarcinoma. In vitro, the tumor-specific viral death effector Apoptin selectively induces apoptosis in malignant hepatic cells. Intratumoral treatment of xenografted subcutaneous hepatomas with Apoptin results in tumor regression. Here, we report a systemic delivery vehicle containing the Apoptin gene linked to asialoglycoprotein (Asor), which targets asialoglycoprotein receptor (ASGPR) present only on the surface of hepatocytes. In vitro, the protein–DNA complex Asor–Apoptin induced apoptosis in HepG2 hepatocarcinoma cells but not in normal L-02 hepatocytes. Non-hepatocyte-derived tumorigenic human A549 cells lacking the membrane ASGPR were not affected by Asor–Apoptin. In vivo systemic delivery of Asor–Apoptin via the tail vein into mice bearing in situ hepatocarcinoma resulted in specific and efficient distribution of Apoptin in both hepatocarcinoma cells and normal hepatocytes. Five days after injection of Asor–Apoptin, the in situ hepatocarcinomas showed significant signs of regression, whereas the surrounding normal hepatocytes did not. Systemically delivered Asor–LacZ expressing non-apoptotic LacZ gene did not inhibit tumor growth. Our data reveal that systemic delivery of Asor–Apoptin specifically induces apoptosis in malignant hepatocytes and thus constitutes a powerful and safe therapeutics against hepatocarcinomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Yang B, Guo A, Herman JG, Clark DP . Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma. Am J Pathol 2003; 163: 1101–1107.

    Article  CAS  Google Scholar 

  2. Gerolami R, Uch R, Brechot C, Mannoni P, Pagnis C . Gene therapy of hepatocarcinoma: a long way from the concept to the therapeutical impact. Cancer Gene Ther 2003; 10: 649–660.

    Article  CAS  Google Scholar 

  3. Rohn JL, Noteborn MHM . The viral death effector Apoptin reveals tumor-specific processes. Apoptosis 2004; 9: 315–322.

    Article  CAS  Google Scholar 

  4. Tavassoli M, Guellen L, Luxon BA, Gaken J . Apoptin: specific killer of tumor cells? Apoptosis 2005; 10: 717–724.

    Article  CAS  Google Scholar 

  5. Teodoro JG, Heilman DW, Parker AE, Green MR . The viral protein Apoptin associates with the anaphase-promoting complex to induce G2/M arrest and apoptosis in the absence of p53. Genes Dev 2004; 18: 1952–1957.

    Article  CAS  Google Scholar 

  6. Guelen L, Paterson H, Gaeken J, Meyers M, Farzaneh F, Tavassoli M . TAT-Apoptin is efficiently delivered and induces apoptosis in cancer cells. Oncogene 2004; 23: 1153–1165.

    Article  CAS  Google Scholar 

  7. Zhuang S-M, Shvarts A, Jochemsen AG, van Oorschot AA, van der Eb AJ, Noteborn MH . Differential sensitivity to Ad5 E1B-21 kD and Bcl-2 proteins of Apoptin-induced versus p53-induced apoptosis. Carcinogenesis 1995; 16: 2939–2944.

    Article  CAS  Google Scholar 

  8. Pietersen AM, Van der Eb MM, Rademaker HJ, van den Wollenberg DJ, Rabelink MJ, Kuppen PJ et al. Specific tumor-cell-killing with adenovirus vectors containing the apoptin gene. Gene Therapy 1999; 6: 882–892.

    Article  CAS  Google Scholar 

  9. Shen Z, Wang Y, Zong Y, Qu S . Experimental study on the antitumor effect of chicken anemia virus vp3 gene against liver carcinoma in vivo. J Huazhong Univ Sci Technol Med Sci 2003; 23: 105–107, 115.

    Article  CAS  Google Scholar 

  10. Zhang Y-H, Leliveld SR, Kooistra K, Molenaar C, Rohn JL, Tanke HJ et al. Recombinant Apoptin multimers kill tumor cells but are not-toxic and epitope-shielded in a normal-cell specific fashion. Exp Cell Res 2003; 289: 36–46.

    Article  CAS  Google Scholar 

  11. Van der Eb MM, Pietersen AM, Speetjens FM, Kuppen PJ, van de Velde CJ, Noteborn MH et al. Gene therapy with Apoptin induces regression of xenografted human hepatomas. Cancer Gene Ther 2002; 9: 53–61.

    Article  CAS  Google Scholar 

  12. Smith RM, Wu GY . Hepatocyte-directed gene delivery by receptor-mediated endocytosis. Semin Liver Dis 1999; 19: 83–92.

    Article  CAS  Google Scholar 

  13. Singh M, Ariatti M . Targeted gene delivery into HepG2 cells using complexes containing DNA, cationized asialoorosomucoid and activated cationic liposomes. J Control Rel 2003; 92: 383–394.

    Article  CAS  Google Scholar 

  14. Singh M, Kisoon N, Ariatti M . Receptor-mediated gene delivery to HepG2 cells by ternary assemblies containing cationic liposomes and cationized asialoorosomucoid. Drug Deliv 2001; 8: 29–34.

    Article  CAS  Google Scholar 

  15. Davis BG, Robinson MA . Drug delivery systems based on sugar–macromolecule conjugates. Curr Opin Drug Discov Dev 2002; 5: 279–288.

    CAS  Google Scholar 

  16. Van Rossenberger SM, Sliedregt-Bol KM, Meeuwenoord NJ, van Berkel TJ, van Boom JH, van der Marel GA . Targeted lysosome disruptive elements for improvement of parenchymal liver cell-specific gene delivery. J Biol Chem 2002; 277: 45803–45810.

    Article  Google Scholar 

  17. Ghosh SS, Takahashi M, Thumala NR, Parashar B, Chowdhury NR, Chowdhury JR . Liver-directed gene-therapy: promises, problems and prospects at the turn of the century. J Hepatol 2000; 32: 238–252.

    Article  CAS  Google Scholar 

  18. McKee TD, DeRome ME, Wu GY, Findeis MA . Preparation of asialoorosomucoid–polylysine conjugates. Bioconjugate Chem 1994; 5: 306–311.

    Article  CAS  Google Scholar 

  19. Kwoh DY, Coffin CC, Lollo CP, Jovenal J, Banaszczyk MG, Mullen P et al. Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver. Biochim Biophys Acta 1999; 1444: 171–190.

    Article  CAS  Google Scholar 

  20. Han J, Il Yeom Y . Specific gene transfer mediated by galactosylated poly-L-lysine into hepatoma cells. Int J Pharmacol 2000; 202: 151–160.

    Article  CAS  Google Scholar 

  21. Lochmann D, Jauk E, Zimmer A . Drug delivery of oligonucleotides by peptides. Eur J Pharm Biopharm 2004; 58: 237–251.

    Article  CAS  Google Scholar 

  22. Trere D, Fiume L, De Giorgi LB, Di Stefano G, Migaldi M, Derenzini M . The asialoglycoprotein receptor in human hepatocellular carcinomas: its expression on proliferating cells. Br J Cancer 1999; 81: 404–408.

    Article  CAS  Google Scholar 

  23. Mok TS, Leung TW, Brown G, Moyses C, Chan AT, Yeo W et al. A phase I safety and pharmacokinetic study of OGT 719 in patients with liver cancer. Acta Oncol 2004; 43: 245–251.

    Article  CAS  Google Scholar 

  24. Havlik R, Kral V, Habib N . Gene therapy of liver tumors: results of the first clinical studies. Cas Lek Cesk 2003; 142: 370–528.

    Google Scholar 

  25. Zhu AX . Hepatocellular carcinoma: are we making progress? Cancer Invest 2003; 21: 418–428.

    Article  Google Scholar 

  26. Tang Z-Y . Hepatocellular carcinoma – cause, treatment and metastasis. World J Gastroenterol 2001; 7: 445–454.

    Article  CAS  Google Scholar 

  27. Kountouras J, Zavos C, Chatzopoulos D . Apoptosis in hepatocellular carcinoma. Hepatogastroenterology 2003; 50: 242–249.

    CAS  PubMed  Google Scholar 

  28. Bantel H, Schulze-Osthoff K . Apoptosis in hepatitis C virus infection. Cell Death Differ 2003; 10: S48–58.

    Article  CAS  Google Scholar 

  29. Suriawinata A, Xu R . An update on the molecular genetics of hepatocellular carcinoma. Semin Liver Dis 2004; 24: 77–88.

    Article  CAS  Google Scholar 

  30. Watanabe J, Kushihata F, Honda K, Sugita A, Tateishi N, Mominoki K et al. Prognostic significance of Bcl-xL in human hepatocellular carcinoma. Surgery 2004; 135: 604–612.

    Article  Google Scholar 

  31. Chun E, Lee KY . Bcl-2 and Bcl-xL are important for the induction of paclitaxel resistance in human hepatocellular carcinoma cells. Biochem Biophys Res Commun 2004; 315: 771–779.

    Article  CAS  Google Scholar 

  32. Takehara T, Takahashi H . Suppression of Bcl-xL deamidation in human hepatocellular carcinomas. Cancer Res 2003; 63: 3054–3057.

    CAS  PubMed  Google Scholar 

  33. Noteborn MH . Apoptin acts as a tumor-specific killer: potentials for an anti-tumor therapy. Cell Mol Biol 2005; 51: 49–60.

    CAS  PubMed  Google Scholar 

  34. Pietersen AM . Preclinical studies with Apoptin. PhD thesis, Erasmus University, Rotterdam, The Netherlands, 2003.

  35. Maddika S, Booy EP, Johar D, Gibson SB, Ghavami S, Los M . Cancer-specific toxicity of apoptin is independent of death receptors but involves the loss of mitochondrial membrane potential and the release of mitochondrial cell-death mediators by a Nur77-dependent pathway. J Cell Sci 2005; 118: 4485–4493.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported in part by grants from Hubei Natural Science Foundation of China (No. 2001ABA004) and Dutch Royal Society of Arts and Sciences (04CDP003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, DJ., Sun, J., Wang, YZ. et al. Inhibition of hepatocarcinoma by systemic delivery of Apoptin gene via the hepatic asialoglycoprotein receptor. Cancer Gene Ther 14, 66–73 (2007). https://doi.org/10.1038/sj.cgt.7700985

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700985

Keywords

This article is cited by

Search

Quick links