Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Systemic inhibition of tumor growth by soluble Flk-1 gene therapy combined with cisplatin

Abstract

Soluble Flk-1, a soluble vascular endothelial growth factor (VEGF) receptor, is a potent inhibitor of angiogenesis, which could restrain growth and metastasis of some experimental tumors. However, antiangiogenic agents alone cannot eradicate tumor completely, and should be combined with other therapy to enhance their effects. In this study, we evaluated the antitumor activity of the combination therapy in the immunocompetent BALB/c mice bearing H22 hepatoma and Meth A fibrosarcoma, respectively. Mice were treated with either msFlk-1 i.m. at 100 μg/mouse once every 3 days for four times from day 3 after the tumor cell injection, cisplatin cycled twice (2 mg/kg i.p. on days 4 and 11 after the tumor cell inoculation), or both agents together. Tumor growth and survival time were continually observed. Antiangiogenesis in vivo was determined by CD31 immunohistochemistry. Assessment of apoptotic cells and histological analysis was also conducted in tumor tissues. Our results showed that the combination therapy could evidently improve antitumor efficacy, including tumor growth suppression, mice survival prolongation, tumor cell apoptosis augmentation as well as neovascularization inhibition as compared with controls, without serious adverse effects. Our data suggest that the combination of DDP with msFlk-1 is more effective to suppress tumor growth in mice than either agent alone, and this combination regimen showed its potential for future clinical application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Saris CP, van de Vaart PJ M, Rietbroek RC, Bloramaert FA . In vitro formation of DNA adducts by cisplatin, lobaplatin and oxaliplatin in calf thymus DNA in solution and in cultured human cells. Carcinogenesis 1996; 17: 2763–2769.

    Article  CAS  PubMed  Google Scholar 

  2. Faivre S, Chan D, Salinas R, Woynarowska B, Woynarowski JM . DNA strand breaks and apoptosis induced by oxaliplatin in cancer cells. Biochem Pharmacol 2003; 66: 225–237.

    Article  CAS  PubMed  Google Scholar 

  3. Yancopoulos GD, Klagsbrun M, Folkman J . Vasculogenesis, angiogenesis, and growth factors: ephrins enter the fray at the border. Cell 1998; 93: 661–664.

    Article  CAS  PubMed  Google Scholar 

  4. Folkman J . Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–1186.

    Article  CAS  PubMed  Google Scholar 

  5. Risau W . Mechanisms of angiogenesis. Nature 1997; 386: 671–674.

    Article  CAS  PubMed  Google Scholar 

  6. Gasparini G . The rationale and future potential of angiogenesis inhibitors in neoplasia. Drugs 1999; 58: 17–38.

    Article  CAS  PubMed  Google Scholar 

  7. Folkman J . Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 1972; 175: 409–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fidler IJ, Ellis LM . The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 1994; 79: 185–188.

    Article  CAS  PubMed  Google Scholar 

  9. Denekamp J . Angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br J Radiol 1993; 66: 181–196.

    Article  CAS  PubMed  Google Scholar 

  10. Ferrara N, Alitalo K . Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 1999; 5: 1359–1364.

    Article  CAS  PubMed  Google Scholar 

  11. Liotta LA, Steeg PS, Stetler-Stevenson WG . Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 1991; 64: 327–336.

    Article  CAS  PubMed  Google Scholar 

  12. Folkman J, Ingber D . Inhibition of angiogenesis. Semin Cancer Biol 1992; 3: 89–96.

    CAS  PubMed  Google Scholar 

  13. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF . Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983; 219: 983–985.

    Article  CAS  PubMed  Google Scholar 

  14. Thomas KA . Vascular endothelial growth factor, a potent and selective angiogenic agent. J Biol Chem 1996; 271: 603–606.

    Article  CAS  PubMed  Google Scholar 

  15. Ferrara N, Davis-Smyth T . The biology of vascular endothelial growth factor. Endocr Rev 1997; 18: 4–25.

    Article  CAS  PubMed  Google Scholar 

  16. Ferrara N . Vascular endothelial growth factor. Eur J Cancer 1996; 32A: 2413–2422.

    Article  CAS  PubMed  Google Scholar 

  17. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z . Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13: 9–22.

    Article  CAS  PubMed  Google Scholar 

  18. Brekken RA, Thorpe PE . Vascular endothelial growth factor and vascular targeting of solid tumors. Anticancer Res 2001; 21: 4221–4229.

    CAS  PubMed  Google Scholar 

  19. Takahashi Y, Kitadai Y, Bucana CD, Cleary KR, Ellis LM . Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 1995; 55: 3964–3968.

    CAS  PubMed  Google Scholar 

  20. Asano M, Yukita A, Suruki H . Wide spectrum of antitumor activity of a neutralizing monoclonal antibody to human vascular endothelial growth factor. Jap J Cancer Res 1999; 90: 93–100.

    Article  CAS  Google Scholar 

  21. Fong TAT, Shawver LK, Sun L, Tang C, App H, Powell TJ et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 1999; 59: 99–106.

    CAS  PubMed  Google Scholar 

  22. Marchand GS, Noiseux N, Tanguay JF, Sirois MG . Blockade of in vivo VEGF-mediated angiogenesis by antisense gene therapy: role of Flk-1 and Flt-1 receptors. Am J Physiol Heart Circ Physiol 2002; 282: 194–204.

    Article  Google Scholar 

  23. Brekken RA, Overholser JP, Stastny VA, Waltenberger J, Minna JD, Thorpe PE . Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Res 2000; 60: 5117–5124.

    CAS  PubMed  Google Scholar 

  24. Prewett M, Huber J, Li Y, Santiago A, O'Connor W, King K et al. Antivascular endothelial growth factor receptor (Fetal Liver Kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 1999; 59: 5209–5218.

    CAS  PubMed  Google Scholar 

  25. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 1993; 362: 841–844.

    Article  CAS  PubMed  Google Scholar 

  26. Takayama K, Ueno H, Nakanishi Y, Sakamoto T, Inoue K, Shimizu K et al. Suppression of angiogenesis and growth by gene transfer of a soluble form of vascular endothelial growth factor receptor into a remote organ. Cancer Res 2000; 60: 2169–2177.

    CAS  PubMed  Google Scholar 

  27. Mahasreshti PJ, Navarro JG, Kataram M, Wang MH, Carey D, Siegal GP et al. Adenovirus-mediated soluble FLT-1 gene therapy for ovarian carcinoma. Clin Cancer Res 2001; 7: 2057–2066.

    CAS  PubMed  Google Scholar 

  28. Lin P, Sankar S, Shan S, Dewhirst MW, Polverini PJ, Quinn TQ et al. Inhibition of tumor growth by targeting tumor endothelium using a soluble vascular endothelial growth factor receptor. Cell Growth Differ 1998; 9: 49–58.

    CAS  PubMed  Google Scholar 

  29. Kendell RL, Thomas KA . Inhibition of vascular endothelial growth factor activity by endogenously encoded soluble receptor. Proc Natl Acad Sci 1993; 90: 10705–10709.

    Article  Google Scholar 

  30. Klement G, Huang P, Mayer B, Green SK, Man S, Bohlen P et al. Differences in therapeutic indexes of combination metronomic chemotherapy and an Anti-VEGFR-2 antibody in multidrug-resistant human breast cancer xenografts. Clin Canc Res 2002; 8: 221–232.

    CAS  Google Scholar 

  31. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ et al. Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Investig 2000; 105: 15–24.

    Article  Google Scholar 

  32. Kakeji Y, Teicher BA . Preclinical studies of the combination of angiogenic inhibitors with cytotoxic agents. Invest New Drugs 1997; 15: 39–48.

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki K, Hayashi N, Miyamoto Y, Yamamoto M, Ohkawa K, Ito Y et al. Expression of vascular permeability factor/vascular endothelial growth factor in human hepatocellular carcinoma. Cancer Res 1996; 56: 3004–3009.

    CAS  PubMed  Google Scholar 

  34. Heidenreich R, Machein M, Nicolaus A, Hilbig A, Wild C, Clauss M et al. Inhibition of solid tumor growth by gene transfer of VEGF receptor-1 mutants. Int J Cancer 2004; 111: 348–357.

    Article  CAS  PubMed  Google Scholar 

  35. Xiao F, Wei Y, Yang L, Zhao X, Tian L, Ding Z et al. A gene therapy for cancer based on the angiogenesis inhibitor, vasostatin. Gene Therapy 2002; 9: 1207–1213.

    Article  CAS  PubMed  Google Scholar 

  36. Vermeulen PB, Gasparini G, Fox SB, Toi M, Martin L, McCulloch P et al. Quantification of angiogenesis in solid human tumours: an international consensus on the methodology and criteria of evaluation. Eur J Cancer 1996; 32: 2474–2784.

    Article  Google Scholar 

  37. Su JM, Wei YQ, Tian L, Zhao X, Yang L, He QM et al. Active immunogene therapy of cancer with vaccine on the basis of chicken homologous matrix metalloproteinase-2. Cancer Res 2003; 63: 600–607.

    CAS  PubMed  Google Scholar 

  38. Cai Q, Dmitrieva NI, Ferraris JD, Brooks HL, van Balkom BWM, Burg M . Pax2 expression occurs in renal medullary epithelial cells in vivo and in cell culture, is osmoregulated, and promotes osmotic tolerance. Proc Natl Acad Sci 2005; 102: 503–508.

    Article  CAS  PubMed  Google Scholar 

  39. Tseng JF, Farnebo FA, Kisker O, Becker CM, Kuo CJ, Folkman J et al. Adenovirus-mediated delivery of a soluble form of the VEGF receptor Flk1 delays the growth of murine and human pancreatic adenocarcinoma in mice. Surgery 2002; 132: 857–865.

    Article  PubMed  Google Scholar 

  40. Davidoff AM, Leary MA, Ng CY, Vanin EF . Gene therapy-mediated expression by tumor cells of the angiogenesis inhibitor flk-1 results in inhibition of neuroblastoma growth in vivo. J Pediatr Surg 2001; 36: 30–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Basic Research Program of China (2001CB510001, 2004CB518800), the projects of National Natural Science Foundation of China, and National 863 Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-Q Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Zhang, XW., Wang, GQ. et al. Systemic inhibition of tumor growth by soluble Flk-1 gene therapy combined with cisplatin. Cancer Gene Ther 13, 940–947 (2006). https://doi.org/10.1038/sj.cgt.7700958

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700958

Keywords

This article is cited by

Search

Quick links