Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Papillomaviruses as targets for cancer gene therapy

Abstract

The human papillomaviruses (HPVs) are a diverse group of infectious agents, some of which are a causative agent of human cancers. Cervical cancer and oral cancer are closely associated with specific types of HPV, and the tumors grow only if there is continual expression of the viral E6 and E7 genes. Evidence from in vitro studies shows that when expression of these genes is inhibited by gene therapy approaches such as antisense RNA, ribozymes, or siRNA, the transformed phenotype of the cells is lost. Although it seems possible that clinical applications of this approach could help in the management of cervical and oral cancers there have been no clinical trials of gene therapy for HPV-associated cancers. Since the basic information is now available, a shift to translational research would be greatly welcomed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. zur Hausen H . Papillomaviruses and cancer: from basic studies to clinical application. Nature Rev Cancer 2002; 2: 342–350.

    Article  CAS  Google Scholar 

  2. Rous P, Beard J . Progression to carcinoma of virus-induced rabbit papillomas. J Exp Med 1935; 62: 523–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gissmann L, zur Hausen H . Partial characterization of viral DNA from human genital warts. Int J Cancer 1980; 25: 605–609.

    Article  CAS  PubMed  Google Scholar 

  4. Munger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M et al. Mechanisms of human papillomavirus-induced oncogenesis. J Virol 2004; 78: 11451–11460.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999; 189: 12–19.

    Article  CAS  PubMed  Google Scholar 

  6. Daling JR, Madeleine MM, Johnson LG, Schwartz SM, Shera KA, Wurscher MA et al. Human papillomavirus, smoking, and sexual practices in the etiology of anal cancer. Cancer 2004; 101: 270–280.

    Article  PubMed  Google Scholar 

  7. Miller C, Johnstone B . Human papillomavirus as a risk factor for oral squamous cell carcinoma: a meta-analysis, 1982–1997. Oral Surg Oral Med Oral Pathol Oral Radiol Endo 2001; 91: 622–635.

    Article  CAS  Google Scholar 

  8. Herrero R, Castellsague X, Pawlita M, Lissowska J, Kee F, Balaram P et al. Human papillomavirus and oral cancer; the International Agency for Research on Cancer multicenter study. J Natl Cancer Inst 2003; 95: 1772–1783.

    Article  PubMed  Google Scholar 

  9. Jemal A, Murray T, Ward E, Samuels A, Tiwari R, Ghafoor A et al. Cancer statistics. CA Cancer J Clin 2005; 55: 10–30.

    Article  PubMed  Google Scholar 

  10. Truman BI, Gooch BF, Sulemana I, Gift HC, Horowitz AM, Evans CA et al. Reviews of evidence on interventions to prevent dental caries, oral and pharyngeal cancers, and sports-related craniofacial injuries. Am J Prev Med 2002; 23: 21.

    Article  PubMed  Google Scholar 

  11. Shillitoe EJ, Kamath P, Chen Z . Papillomaviruses as targets for cancer gene therapy. In: Sobol R, Scanlon K (eds). The Internet Book of Gene Therapy. Stamford: Appleton and Lange, 1995, pp. 269–280.

    Google Scholar 

  12. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM . The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63: 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  13. Barbosa MS, Edmonds C, Fisher C, Schiller JT, Lowy DR, Vousden KH . The region of the HPV E7 oncoprotein homologous to adenovirus E1a and SV40 large T antigen contains separate domains for Rb binding and casein kinase II phosphorylation. EMBO J 1990; 9: 153–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scheffner M, Munger K, Huibregtse JM, Howley PM . Targeted degradation of the retinoblastoma protein by human papillomavirus E7-E6 fusion proteins. EMBO J 1992; 11: 2425–2431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shin KH, Tannyhill RJ, Liu X, Park NH . Oncogenic transformation of HPV-immortalized human oral keratinocytes is associated with the genetic instability of cells. Oncogene 1996; 12: 1089–1096.

    CAS  PubMed  Google Scholar 

  16. Veeraraghavalu K, Pedtt M, Kumar RV, Nair P, Rangarajan A, Stanley MA et al. Papillomavirus-mediated neoplastic progression is associated with reciprocal changes in Jagged1 and Manic Fringe Expression linked to Notch activation. J Virol 2004; 78: 8687–8700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Houten VM, Snijders PJ, van den Brekel MW, Kummer JA, Meijer CJ, van Leeuwen B et al. Biological evidence that human papillomaviruses are etiologically involved in a subgroup of head and neck squamous cell carcinomas. Int J Cancer 2001; 93: 232–235.

    Article  CAS  PubMed  Google Scholar 

  18. Dai M, Clifford GM, le Calvez F, Castellsague X, Snijders PJ, Pawlita M et al. Human papillomavirus type 16 and TP53 mutation in oral cancer: matched analysis of the IARC multicenter study. Cancer Res 2004; 64: 468–471.

    Article  CAS  PubMed  Google Scholar 

  19. Wiest T, Schwartz E, Enders C, Flechtenmacher C, Bosch FX . Involvement of intact HPV E6/E7 gene expression in head and neck cancers with unaltered p53 status and perturbed pRB cell cycle control. Oncogene 2002; 21: 1510–1517.

    Article  CAS  PubMed  Google Scholar 

  20. Braakhuis BJ, Snijders PJ, Keune WJ, Meijer CJ, Ruijter-Schippers HJ, Leemans CR et al. Genetic patterns in head and neck cancers that contain or lack transcriptionally active human papillomavirus. J Natl Cancer Inst 2004; 96: 998–1006.

    Article  CAS  PubMed  Google Scholar 

  21. Koutsky LA, Ault KA, Wheeler CM, Brown DR, Barr E, Alvarez FB et al. A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med 2002; 347: 1645–1651.

    Article  CAS  PubMed  Google Scholar 

  22. Harper DM, Franco EL, Wheeler C, Ferris DG, Jenkins D, Schuind A et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomized controlled trial. Lancet 2004; 364: 1757–1765.

    Article  CAS  PubMed  Google Scholar 

  23. MacKenzie D . Will cancer vaccine get to all women? New Sci 2005; 186: 8.

    Google Scholar 

  24. Preville X, Ladant D, Timmerman B, Leclerc C . Eradication of established tumors by vaccination with recombinant Bordetella pertussis adenylate cyclase carrying the human papillomavirus 16 E7 oncogene. Cancer Res 2005; 65: 641–649.

    CAS  PubMed  Google Scholar 

  25. Goodwin EC, Naeger LK, Breiding DE, Androphy EJ, DiMaio D . Transactivation-competent bovine papillomavirus E2 protein is specifically required for efficient repression of human papillomavirus oncogene expression and for acute growth inhibition of cervical carcinoma cell lines. J Virol 1998; 72: 3925–3934.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Francis DA, Schmid SI, Howley PM . Repression of the integrated papillomavirus E6/E7 promoter is required for growth suppression of cervical cancer cells. J Virol 2000; 74: 2679–2686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shillitoe EJ, Noonan S . Strength and specificity of different gene promoters in oral cancer cells. Oral Oncol 2000; 36: 214–220.

    Article  CAS  PubMed  Google Scholar 

  28. Shillitoe EJ, Lou E, Griffith C . A herpes/papillomavirus chimera for treatment of oral cancer. J Dent Res 2005; 84 (Special Issue A): Abstract 1403.

  29. von Knebel Doeberitz M, Oltersdorf T, Schwarz E, Gissmann L . Correlation of modified human papillomavirus early gene expression with altered growth properties in C4-1 cervical carcinoma cells. Cancer Res 1988; 48: 3780–3786.

    CAS  PubMed  Google Scholar 

  30. Steele C, Sacks PG, Adler-Storthz K, Shillitoe EJ . Effects on cancer cells of plasmids that express antisense RNA of human papillomavirus type 18. Cancer Res 1992; 52: 4706–4711.

    CAS  PubMed  Google Scholar 

  31. Steele C, Cowsert LM, Shillitoe EJ . Effects of human papillomavirus type-18-specific antisense oligonucleotides on the transformed phenotype of human carcinoma cell lines. Cancer Res 1993; 53: 2330–2337.

    CAS  PubMed  Google Scholar 

  32. Madrigal M, Janicek MF, Sevin BU, Perras J, Estape R, Penalver M et al. In vitro antigene therapy targeting HPV-16 E6 and E7 in cervical carcinoma. Gynecol Oncol 1997; 64: 18–25.

    Article  CAS  PubMed  Google Scholar 

  33. He Y, Huang L . Growth inhibition of human papillomavirus 16 DNA-positive mouse tumor by antisense RNA transcribed from U6 promoter. Cancer Res 1997; 57: 3993–3999.

    CAS  PubMed  Google Scholar 

  34. Hamada K, Sakaue M, Alemany R, Zhang WW, Horio Y, Roth JA et al. Adenovirus-mediated transfer of HPV E6/E7 antisense RNA to human cervical cancer cells. Gynecol Oncol 1996; 63: 219–227.

    Article  CAS  PubMed  Google Scholar 

  35. Choo CK, Ling MT, Suen CK, Chan KW, Kwong YL . Retrovirus-mediated delivery of HPV16 E7 antisense RNA inhibited tumorigenicity of CaSki cells. Gynecol Oncol 2000; 78: 293–301.

    Article  CAS  PubMed  Google Scholar 

  36. Chen Z, Kamath P, Zhang S, Weil MM, Shillitoe EJ . Effectiveness of three ribozymes for cleavage of an RNA transcript from human papillomavirus type 18. Cancer Gene Ther 1995; 2: 263–271.

    CAS  PubMed  Google Scholar 

  37. Chen Z, Kamath P, Zhang S, St John L, Adler-Storthz K, Shillitoe EJ . Effects on tumor cells of ribozymes that cleave the RNA transcripts of human papillomavirus type 18. Cancer Gene Ther 1996; 3: 18–23.

    CAS  PubMed  Google Scholar 

  38. Alvarez-Salas LM, Cullinan AE, Siwkowski A, Hampel A, DiPaolo JA . Inhibition of HPV-16 E6/E7 immortalization of normal keratinocytes by hairpin ribozymes. Proc Natl Acad Sci USA 1998; 95: 1189–1194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pan W, Xin P, Morrey J, Clawson GA . A self-processing ribozyme cassette: utility against human papillomavirus 11 E6/E7 mRNA and Hepatitis B virus. Mol Ther 2004; 9: 596–606.

    Article  CAS  PubMed  Google Scholar 

  40. Jiang M, Milner J . Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 2002; 21: 6041–6048.

    Article  CAS  PubMed  Google Scholar 

  41. Butz K, Ristriani T, Hengstermann A, Denk C, Scheffner M, Hoppe-Seyler F . siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene 2003; 22: 5938–5945.

    Article  CAS  PubMed  Google Scholar 

  42. Koivusalo R, Krausz E, Helenius H, Hietanen S . Chemotherapy compounds in cervical cancer cells primed by reconstitution of p53 function after short interfering RNA-mediated degradation of human papillomavirus 18 E6 mRNA. Opposite effect of siRNA in combination with different drugs. Mol Pharmacol 2005; 68: 372–382.

    CAS  PubMed  Google Scholar 

  43. Yoshinouchi M, Yamada T, Kizaki M, Fen J, Koseki T, Ikeda Y et al. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by E6 siRNA. Mol Ther 2003; 8: 762–768.

    Article  CAS  PubMed  Google Scholar 

  44. Butz K, Denk C, Ullmann A, Scheffner M, Hoppe-Seyler F . Induction of apoptosis in human papillomavirus-positive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc Natl Acad Sci USA 2000; 97: 6693–6697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Braun K, Ehemann V, Waldeck W, Pipkorn R, Corban-Wilhelm H, Jenne J et al. HPV18 E6 and E7 genes affect cell cycle, pRB and p53 of cervical tumor cells and represent prominent candidates for intervention by use peptide nucleic acids (PNAs). Cancer Lett 2004; 209: 37–49.

    Article  CAS  PubMed  Google Scholar 

  46. Ahn WS, Han YJ, Bae SM, Kim TH, Rho MS, Lee JM et al. Differential suppression of human cervical cancer cell growth by adenovirus delivery of p53 in vitro: arrest phase of cell cycle is dependent on cell line. Jap J Cancer Res 2002; 93: 1012–1019.

    Article  CAS  Google Scholar 

  47. Clayman GL, Trapnell BC, Mittereder N, Liu TJ, Eicher S, Zhang S et al. Transduction of normal and malignant oral epithelium by an adenovirus vector: the effect of dose and treatment time on transduction efficiency and tissue penetration. Cancer Gene Ther 1995; 2: 105–111.

    CAS  PubMed  Google Scholar 

  48. Liu TJ, Zhang WW, Taylor DL, Roth JA, Goepfert H, Clayman GL . Growth suppression of human head and neck cancer cells by the introduction of a wild-type p53 gene via a recombinant adenovirus. Cancer Res 1994; 54: 3662–3667.

    CAS  PubMed  Google Scholar 

  49. McNeish IA, Bell SJ, Lemoine NR . Gene therapy progress and prospects: cancer gene therapy using tumor-suppressor genes. Gene Therapy 2004; 11: 497–503.

    Article  CAS  PubMed  Google Scholar 

  50. Balague C, Noya F, Alemany R, Chow LT, Curiel DT . Human papillomavirus E6E7-mediated adenovirus cell killing: selectivity of mutant adenovirus replication in organotypic cultures of human keratinocytes. J Virol 2001; 75: 7602–7611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shillitoe EJ, Noonan S, Hinkle CC, Marini FC, Kellman RM . Transduction of normal and malignant oral epithelium by particle bombardment. Cancer Gene Ther 1998; 5: 176–182.

    CAS  PubMed  Google Scholar 

  52. Piro LD . Apoptosis, Bcl-2 antisense, and cancer therapy. Oncology 2004; 18 (Suppl 10): 5–10.

    PubMed  Google Scholar 

  53. Kunke D, Grimm D, Denger S, Kreuzer J, Delius H, Komitowski D et al. Preclinical study on gene therapy of cervical carcinoma using adeno-associated virus vectors. Cancer Gene Ther 2000; 7: 766–777.

    Article  CAS  PubMed  Google Scholar 

  54. Walz CM, Correa-Ochoa MM, Muller M, Schlehofer JR . Adenoassociated virus type 2-induced inhibition of the human papillomavirus type 18 promoter in transgenic mice. Virol 2002; 293: 172–181.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E J Shillitoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shillitoe, E. Papillomaviruses as targets for cancer gene therapy. Cancer Gene Ther 13, 445–450 (2006). https://doi.org/10.1038/sj.cgt.7700926

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700926

Keywords

This article is cited by

Search

Quick links