Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Adeno-associated virus vectors: potential applications for cancer gene therapy

Abstract

Augmenting cancer treatment by protein and gene delivery continues to gain momentum based on success in animal models. The primary hurdle of fully exploiting the arsenal of molecular targets and therapeutic transgenes continues to be efficient delivery. Vectors based on adeno-associated virus (AAV) are of particular interest as they are capable of inducing transgene expression in a broad range of tissues for a relatively long time without stimulation of a cell-mediated immune response. Perhaps the most important attribute of AAV vectors is their safety profile in phase I clinical trials ranging from CF to Parkinson's disease. The utility of AAV vectors as a gene delivery agent in cancer therapy is showing promise in preclinical studies. In this review, we will focus on the basic biology of AAV as well as recent progress in the use of this vector in cancer gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stilwell JL, Samulski RJ . Adeno-associated virus vectors for therapeutic gene transfer. Biotechniques. 2003;34:148–150, 152, 154 passim.

    Article  CAS  PubMed  Google Scholar 

  2. Hildinger M, Auricchio A . Advances in AAV-mediated gene transfer for the treatment of inherited disorders. Eur J Hum Genet. 2004;12:263–271.

    Article  CAS  PubMed  Google Scholar 

  3. Kotin RM, Linden RM, Berns KI . Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J. 1992;11:5071–5078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Muzyczka N . Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top Microbiol Immunol. 1992;158:97–129.

    CAS  PubMed  Google Scholar 

  5. Berns KI, Hauswirth WW . Adeno-associated viruses. Adv Virus Res. 1979;25:407–449.

    Article  CAS  PubMed  Google Scholar 

  6. Rolling F, Samulski RJ . AAV as a viral vector for human gene therapy. Generation of recombinant virus. Mol Biotechnol. 1995;3:9–15.

    Article  CAS  PubMed  Google Scholar 

  7. Wistuba A, Kern A, Weger S, Grimm D, Kleinschmidt JA . Subcellular compartmentalization of adeno-associated virus type 2 assembly. J Virol. 1997;71:1341–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Summerford C, Samulski RJ . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol. 1998;72:1438–1445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Summerford C, Bartlett JS, Samulski RJ . AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med. 1999;5:78–82.

    Article  CAS  PubMed  Google Scholar 

  10. Qing K, Mah C, Hansen J, et al. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med. 1999;5:71–77.

    Article  CAS  PubMed  Google Scholar 

  11. Bartlett JS, Wilcher R, Samulski RJ . Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J Virol. 2000;74:2777–2785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bartlett JS, Samulski RJ, McCown TJ . Selective and rapid uptake of adeno-associated virus type 2 in brain. Hum Gene Ther. 1998;9:1181–1186.

    Article  CAS  PubMed  Google Scholar 

  13. Duan D, Li Q, Kao AW, et al. Dynamin is required for recombinant adeno-associated virus type 2 infection. J Virol. 1999;73:10371–10376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Opie SR, Warrington Jr KH, Agbandje-McKenna M, Zolotukhin S, Muzyczka N . Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding. J Virol. 2003;77:6995–7006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kern A, Schmidt K, Leder C, et al. Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J Virol. 2003;77:11072–11081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sanlioglu S, Benson PK, Yang J, et al. Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activation. J Virol. 2000;74:9184–9196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Douar AM, Poulard K, Stockholm D, Danos O . Intracellular trafficking of adeno-associated virus vectors: routing to the late endosomal compartment and proteasome degradation. J Virol. 2001;75:1824–1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Girod A, Wobus CE, Zadori Z, et al. The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. J Gen Virol. 2002;83:973–978.

    Article  CAS  PubMed  Google Scholar 

  19. Seisenberger G, Ried MU, Endress T, et al. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science. 2001;294:1929–1932.

    Article  CAS  PubMed  Google Scholar 

  20. Weitzman MD, Fisher KJ, Wilson JM . Recruitment of wild-type and recombinant adeno-associated virus into adenovirus replication centers. J Virol. 1996;70:1845–1854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hansen J, Qing K, Kwon HJ, Mah C, Srivastava A . Impaired intracellular trafficking of adeno-associated virus type 2 vectors limits efficient transduction of murine fibroblasts. J Virol. 2000;74:992–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kasamatsu H, Nakanishi A . How do animal DNA viruses get to the nucleus? Annu Rev Microbiol. 1998;52:627–686.

    Article  CAS  PubMed  Google Scholar 

  23. Ferrari FK, Samulski T, Shenk T, Samulski RJ . Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol. 1996;70:3227–3234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fisher KJ, Gao GP, Weitzman MD, et al. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol. 1996;70:520–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kay MA, Manno CS, Ragni MV, et al. Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet. 2000;24:257–261.

    Article  CAS  PubMed  Google Scholar 

  26. Manno CS, Chew AJ, Hutchison S, et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood. 2003;101:2963–2972.

    Article  CAS  PubMed  Google Scholar 

  27. Flotte T, Carter B, Conrad C, et al. A phase I study of an adeno-associated virus-CFTR gene vector in adult CF patients with mild lung disease. Hum Gene Ther. 1996;7:1145–1159.

    Article  CAS  PubMed  Google Scholar 

  28. Janson C, McPhee S, Bilaniuk L, et al. Clinical protocol. Gene therapy of Canavan disease: AAV-2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain. Hum Gene Ther. 2002;13:1391–1412.

    Article  CAS  PubMed  Google Scholar 

  29. Acland GM, Aguirre GD, Ray J, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet. 2001;28:92–95.

    CAS  PubMed  Google Scholar 

  30. Ali RR, Sarra GM, Stephens C, et al. Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet. 2000;25:306–310.

    Article  CAS  PubMed  Google Scholar 

  31. Green ES, Rendahl KG, Zhou S, et al. Two animal models of retinal degeneration are rescued by recombinant adeno-associated virus-mediated production of FGF-5 and FGF-18. Mol Ther. 2001;3:507–515.

    Article  CAS  PubMed  Google Scholar 

  32. Lai YK, Shen WY, Brankov M, et al. Potential long-term inhibition of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene therapy. Gene Therapy. 2002;9:804–813.

    Article  CAS  PubMed  Google Scholar 

  33. McGee Sanftner LH, Abel H, Hauswirth WW, Flannery JG . Glial cell line derived neurotrophic factor delays photoreceptor degeneration in a transgenic rat model of retinitis pigmentosa. Mol Ther. 2001;4:622–629.

    Article  CAS  PubMed  Google Scholar 

  34. McGee Sanftner LH, Rendahl KG, Quiroz D, et al. Recombinant AAV-mediated delivery of a tet-inducible reporter gene to the rat retina. Mol Ther. 2001;3:688–696.

    Article  CAS  PubMed  Google Scholar 

  35. Surace EM, Auricchio A . Adeno-associated viral vectors for retinal gene transfer. Prog Retin Eye Res. 2003;22:705–719.

    Article  CAS  PubMed  Google Scholar 

  36. Martin KR, Quigley HA, Zack DJ, et al. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci. 2003;44:4357–4365.

    Article  PubMed  Google Scholar 

  37. Schlichtenbrede FC, da Cruz L, Stephens C, et al. Long-term evaluation of retinal function in Prph2Rd2/Rd2 mice following AAV-mediated gene replacement therapy. J Gene Med. 2003;5:757–764.

    Article  CAS  PubMed  Google Scholar 

  38. Herzog RW, Hagstrom JN, Kung SH, et al. Stable gene transfer and expression of human blood coagulation factor IX after intramuscular injection of recombinant adeno-associated virus. Proc Natl Acad Sci USA. 1997;94:5804–5809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koeberl DD, Alexander IE, Halbert CL, Russell DW, Miller AD . Persistent expression of human clotting factor IX from mouse liver after intravenous injection of adeno-associated virus vectors. Proc Natl Acad Sci USA. 1997;94:1426–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakai H, Herzog RW, Hagstrom JN, et al. Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood. 1998;91:4600–4607.

    Article  CAS  PubMed  Google Scholar 

  41. Snyder RO, Miao CH, Patijn GA, et al. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet. 1997;16:270–276.

    Article  CAS  PubMed  Google Scholar 

  42. Wang L, Takabe K, Bidlingmaier SM, Ill CR, Verma IM . Sustained correction of bleeding disorder in hemophilia B mice by gene therapy. Proc Natl Acad Sci USA. 1999;96:3906–3910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang L, Nichols TC, Read MS, Bellinger DA, Verma IM . Sustained expression of therapeutic level of factor IX in hemophilia B dogs by AAV-mediated gene therapy in liver. Mol Ther. 2000;1:154–158.

    Article  CAS  PubMed  Google Scholar 

  44. Monahan PE, Samulski RJ, Tazelaar J, et al. Direct intramuscular injection with recombinant AAV vectors results in sustained expression in a dog model of hemophilia. Gene Therapy. 1998;5:40–49.

    Article  CAS  PubMed  Google Scholar 

  45. Larson PJ, High KA . Gene therapy for hemophilia B: AAV-mediated transfer of the gene for coagulation factor IX to human muscle. Adv Exp Med Biol. 2001;489:45–57.

    Article  CAS  PubMed  Google Scholar 

  46. Chiorini JA, Yang L, Liu Y, Safer B, Kotin RM . Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J Virol. 1997;71:6823–6833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chiorini JA, Kim F, Yang L, Kotin RM . Cloning and characterization of adeno-associated virus type 5. J Virol. 1999;73:1309–1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gao GP, Alvira MR, Wang L, et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA. 2002;99:11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Muramatsu S, Mizukami H, Young NS, Brown KE . Nucleotide sequencing and generation of an infectious clone of adeno-associated virus 3. Virology. 1996;221:208–217.

    Article  CAS  PubMed  Google Scholar 

  50. Rutledge EA, Halbert CL, Russell DW . Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol. 1998;72:309–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xiao W, Chirmule N, Berta SC, et al. Gene therapy vectors based on adeno-associated virus type 1. J Virol. 1999;73:3994–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gao G, Vandenberghe LH, Alvira MR, et al. Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol. 2004;78:6381–6388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bantel-Schaal U, zur Hausen H . Characterization of the DNA of a defective human parvovirus isolated from a genital site. Virology. 1984;134:52–63.

    Article  CAS  PubMed  Google Scholar 

  54. Rabinowitz JE, Samulski RJ . Building a better vector: the manipulation of AAV virions. Virology. 2000;278:301–308.

    Article  CAS  PubMed  Google Scholar 

  55. Kaludov N, Brown KE, Walters RW, Zabner J, Chiorini JA . Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J Virol. 2001;75:6884–6893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pasquale GD, Davidson BL, Stein CS, et al. Identification of PDGFR as a receptor for AAV-5 transduction. Nat Med. 2003;9:1306–1312.

    Article  PubMed  CAS  Google Scholar 

  57. Chao H, Liu Y, Rabinowitz J, et al. Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol Ther. 2000;2:619–623.

    Article  CAS  PubMed  Google Scholar 

  58. Handa A, Muramatsu S, Qiu J, Mizukami H, Brown KE . Adeno-associated virus (AAV)-3-based vectors transduce haematopoietic cells not susceptible to transduction with AAV-2-based vectors. J Gen Virol. 2000;81:2077–2084.

    Article  CAS  PubMed  Google Scholar 

  59. Zabner J, Seiler M, Walters R, et al. Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J Virol. 2000;74:3852–3858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Halbert CL, Allen JM, Miller AD . Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol. 2001;75:6615–6624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Davidson BL, Stein CS, Heth JA, et al. Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci USA. 2000;97:3428–3432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mingozzi F, Schuttrumpf J, Arruda VR, et al. Improved hepatic gene transfer by using an adeno-associated virus serotype 5 vector. J Virol. 2002;76:10497–10502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rabinowitz JE, Rolling F, Li C, et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol. 2002;76:791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Weber M, Rabinowitz J, Provost N, et al. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primate after subretinal delivery. Mol Ther. 2003;7:774–781.

    Article  CAS  PubMed  Google Scholar 

  65. Grimm D, Zhou S, Nakai H, et al. Preclinical in vivo evaluation of pseudotyped adeno-associated virus vectors for liver gene therapy. Blood. 2003;102:2412–2419.

    Article  CAS  PubMed  Google Scholar 

  66. Chao H, Monahan PE, Liu Y, Samulski RJ, Walsh CE . Sustained and complete phenotype correction of hemophilia B mice following intramuscular injection of AAV1 serotype vectors. Mol Ther. 2001;4:217–222.

    Article  CAS  PubMed  Google Scholar 

  67. Passini MA, Watson DJ, Vite CH, et al. Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in complementary patterns of neuronal transduction to AAV2 and total long-term correction of storage lesions in the brains of beta-glucuronidase-deficient mice. J Virol. 2003;77:7034–7040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vite CH, Passini MA, Haskins ME, Wolfe JH . Adeno-associated virus vector-mediated transduction in the cat brain. Gene Therapy. 2003;10:1874–1881.

    Article  CAS  PubMed  Google Scholar 

  69. Mochizuki H, Hayakawa H, Migita M, et al. An AAV-derived Apaf-1 dominant negative inhibitor prevents MPTP toxicity as antiapoptotic gene therapy for Parkinson's disease. Proc Natl Acad Sci USA. 2001;98:10918–10923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Muramatsu S, Fujimoto K, Ikeguchi K, et al. Behavioral recovery in a primate model of Parkinson's disease by triple transduction of striatal cells with adeno-associated viral vectors expressing dopamine-synthesizing enzymes. Hum Gene Ther. 2002;13:345–354.

    Article  CAS  PubMed  Google Scholar 

  71. Sanchez-Pernaute R, Harvey-White J, Cunningham J, Bankiewicz KS . Functional effect of adeno-associated virus mediated gene transfer of aromatic L-amino acid decarboxylase into the striatum of 6-OHDA-lesioned rats. Mol Ther. 2001;4:324–330.

    Article  CAS  PubMed  Google Scholar 

  72. Shen Y, Muramatsu SI, Ikeguchi K, et al. Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-L-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson's disease. Hum Gene Ther. 2000;11:1509–1519.

    Article  CAS  PubMed  Google Scholar 

  73. Kirik D, Annett LE, Burger C, et al. Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: a new primate model of Parkinson's disease. Proc Natl Acad Sci USA. 2003;100:2884–2889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fu H, Samulski RJ, McCown TJ, et al. Neurological correction of lysosomal storage in a mucopolysaccharidosis IIIB mouse model by adeno-associated virus-mediated gene delivery. Mol Ther. 2002;5:42–49.

    Article  CAS  PubMed  Google Scholar 

  75. Skorupa AF, Fisher KJ, Wilson JM, Parente MK, Wolfe JH . Sustained production of beta-glucuronidase from localized sites after AAV vector gene transfer results in widespread distribution of enzyme and reversal of lysosomal storage lesions in a large volume of brain in mucopolysaccharidosis VII mice. Exp Neurol. 1999;160:17–27.

    Article  CAS  PubMed  Google Scholar 

  76. Lin EJ, Richichi C, Young D, et al. Recombinant AAV-mediated expression of galanin in rat hippocampus suppresses seizure development. Eur J Neurosci. 2003;18:2087–2092.

    Article  PubMed  Google Scholar 

  77. Haberman RP, Samulski RJ, McCown TJ . Attenuation of seizures and neuronal death by adeno-associated virus vector galanin expression and secretion. Nat Med. 2003;9:1076–1080.

    Article  CAS  PubMed  Google Scholar 

  78. Fraites Jr TJ, Schleissing MR, Shanely RA, et al. Correction of the enzymatic and functional deficits in a model of Pompe disease using adeno-associated virus vectors. Mol Ther. 2002;5:571–578.

    Article  CAS  PubMed  Google Scholar 

  79. Hoshijima M, Ikeda Y, Iwanaga Y, et al. Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat Med. 2002;8:864–871.

    Article  CAS  PubMed  Google Scholar 

  80. Melo LG, Agrawal R, Zhang L, et al. Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene. Circulation. 2002;105:602–607.

    Article  CAS  PubMed  Google Scholar 

  81. Takahashi H, Hirai Y, Migita M, et al. Long-term systemic therapy of Fabry disease in a knockout mouse by adeno-associated virus-mediated muscle-directed gene transfer. Proc Natl Acad Sci USA. 2002;99:13777–13782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chu D, Sullivan CC, Weitzman MD, et al. Direct comparison of efficiency and stability of gene transfer into the mammalian heart using adeno-associated virus versus adenovirus vectors. J Thorac Cardiovasc Surg. 2003;126:671–679.

    Article  CAS  PubMed  Google Scholar 

  83. Vassalli G, Bueler H, Dudler J, von Segesser LK, Kappenberger L . Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int J Cardiol. 2003;90:229–238.

    Article  PubMed  Google Scholar 

  84. Yue Y, Li Z, Harper SQ, et al. Microdystrophin gene therapy of cardiomyopathy restores dystrophin–glycoprotein complex and improves sarcolemma integrity in the mdx mouse heart. Circulation. 2003;108:1626–1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Flotte TR, Afione SA, Zeitlin PL . Adeno-associated virus vector gene expression occurs in nondividing cells in the absence of vector DNA integration. Am J Resp Cell Mol Biol. 1994;11:517–521.

    Article  CAS  Google Scholar 

  86. Monahan PE, Samulski RJ . Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today. 2000;6:433–440.

    Article  CAS  PubMed  Google Scholar 

  87. Bartlett JS, Kleinschmidt J, Boucher RC, Samulski RJ . Targeted adeno-associated virus vector transduction of nonpermissive cells mediated by a bispecific F(ab'gamma)2 antibody. Nat Biotechnol. 1999;17:181–186.

    Article  CAS  PubMed  Google Scholar 

  88. Ponnazhagan S, Mahendra G, Kumar S, Thompson JA, Castillas Jr M . Conjugate-based targeting of recombinant adeno-associated virus type 2 vectors by using avidin-linked ligands. J Virol. 2002;76:12900–12907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Buning H, Ried MU, Perabo L, et al. Receptor targeting of adeno-associated virus vectors. Gene Therapy. 2003;10:1142–1151.

    Article  CAS  PubMed  Google Scholar 

  90. Girod A, Ried M, Wobus C, et al. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nat Med. 1999;5:1052–1056.

    Article  CAS  PubMed  Google Scholar 

  91. Grifman M, Trepel M, Speece P, et al. Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids. Mol Ther. 2001;3:964–975.

    Article  CAS  PubMed  Google Scholar 

  92. Wu P, Xiao W, Conlon T, et al. Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J Virol. 2000;74:8635–8647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rabinowitz JE, Xiao W, Samulski RJ . Insertional mutagenesis of AAV2 capsid and the production of recombinant virus. Virology. 1999;265:274–285.

    Article  CAS  PubMed  Google Scholar 

  94. Shi W, Arnold GS, Bartlett JS . Insertional mutagenesis of the adeno-associated virus type 2 (AAV2) capsid gene and generation of AAV2 vectors targeted to alternative cell-surface receptors. Hum Gene Ther. 2001;12:1697–1711.

    Article  CAS  PubMed  Google Scholar 

  95. Moskalenko M, Chen L, van Roey M, et al. Epitope mapping of human anti-adeno-associated virus type 2 neutralizing antibodies: implications for gene therapy and virus structure. J Virol. 2000;74:1761–1766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang Q, Mamounas M, Yu G, et al. Development of novel cell surface CD34-targeted recombinant adenoassociated virus vectors for gene therapy. Hum Gene Ther. 1998;9:1929–1937.

    Article  CAS  PubMed  Google Scholar 

  97. Weichert WS, Parker JS, Wahid AT, et al. Assaying for structural variation in the parvovirus capsid and its role in infection. Virology. 1998;250:106–117.

    Article  CAS  PubMed  Google Scholar 

  98. Chapman MS, Rossmann MG . Structure, sequence, and function correlations among parvoviruses. Virology. 1993;194:491–508.

    Article  CAS  PubMed  Google Scholar 

  99. Ried MU, Girod A, Leike K, Buning H, Hallek M . Adeno-associated virus capsids displaying immunoglobulin-binding domains permit antibody-mediated vector retargeting to specific cell surface receptors. J Virol. 2002;76:4559–4566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xie Q, Bu W, Bhatia S, et al. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci USA. 2002;99:10405–10410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tsao J, Chapman MS, Agbandje M, et al. The three-dimensional structure of canine parvovirus and its functional implications. Science. 1991;251:1456–1464.

    Article  CAS  PubMed  Google Scholar 

  102. Agbandje M, McKenna R, Rossmann MG, Strassheim ML, Parrish CR . Structure determination of feline panleukopenia virus empty particles. Proteins. 1993;16:155–171.

    Article  CAS  PubMed  Google Scholar 

  103. Agbandje-McKenna M, Llamas-Saiz AL, Wang F, Tattersall P, Rossmann MG . Functional implications of the structure of the murine parvovirus, minute virus of mice. Structure. 1998;6:1369–1381.

    Article  CAS  PubMed  Google Scholar 

  104. Agbandje M, Kajigaya S, McKenna R, Young NS, Rossmann MG . The structure of human parvovirus B19 at 8 A resolution. Virology. 1994;203:106–115.

    Article  CAS  PubMed  Google Scholar 

  105. Rabinowitz JE, Samulski RJ . Vector biophysics: crystal-clear view. Gene Therapy. 2002;9:1413–1414.

    Article  CAS  PubMed  Google Scholar 

  106. Rabinowitz JE, Samulski RJ . The adeno-associated virus crystal: impact inversely proportional to size. Mol Ther. 2002;6:443–445.

    Article  CAS  PubMed  Google Scholar 

  107. Hauck B, Xiao W . Characterization of tissue tropism determinants of adeno-associated virus type 1. J Virol. 2003;77:2768–2774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Senapathy P, Carter BJ . Molecular cloning of adeno-associated virus variant genomes and generation of infectious virus by recombination in mammalian cells. J Biol Chem. 1984;259:4661–4666.

    Article  CAS  PubMed  Google Scholar 

  109. Bowles DE, Rabinowitz JE, Samulski RJ . Marker rescue of adeno-associated virus (AAV) capsid mutants: a novel approach for chimeric AAV production. J Virol. 2003;77:423–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hauck B, Chen L, Xiao W . Generation and characterization of chimeric recombinant AAV vectors. Mol Ther. 2003;7:419–425.

    Article  CAS  PubMed  Google Scholar 

  111. Rabinowitz J, Bowles DE, Faust SM, Ledford JG, Cunningham SE, Samulski RJ . Cross-dressing the virion: the transcapsidation of AAV serotypes functionally defines subgroups. J Virol. 2004 (accepted).

  112. Dong JY, Fan PD, Frizzell RA . Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther. 1996;7:2101–2112.

    Article  CAS  PubMed  Google Scholar 

  113. Hermonat PL, Quirk JG, Bishop BM, Han L . The packaging capacity of adeno-associated virus (AAV) and the potential for wild-type-plus AAV gene therapy vectors. FEBS Lett. 1997;407:78–84.

    Article  CAS  PubMed  Google Scholar 

  114. Duan D, Yue Y, Engelhardt JF . Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol Ther. 2001;4:383–391.

    Article  CAS  PubMed  Google Scholar 

  115. Nakai H, Storm TA, Kay MA . Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nat Biotechnol. 2000;18:527–532.

    Article  CAS  PubMed  Google Scholar 

  116. Sun L, Li J, Xiao X . Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med. 2000;6:599–602.

    Article  CAS  PubMed  Google Scholar 

  117. Yan Z, Zhang Y, Duan D, Engelhardt JF . Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci USA. 2000;97:6716–6721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang J, Zhou W, Zhang Y, et al. Concatamerization of adeno-associated virus circular genomes occurs through intermolecular recombination. J Virol. 1999;73:9468–9477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Duan D, Yan Z, Yue Y, Engelhardt JF . Structural analysis of adeno-associated virus transduction circular intermediates. Virology. 1999;261:8–14.

    Article  CAS  PubMed  Google Scholar 

  120. Yan Z, Ritchie TC, Duan D, Engelhardt JF . Recombinant AAV-mediated gene delivery using dual vector heterodimerization. Methods Enzymol. 2002;346:334–357.

    Article  CAS  PubMed  Google Scholar 

  121. Chao H, Sun L, Bruce A, Xiao X, Walsh CE . Expression of human factor VIII by splicing between dimerized AAV vectors. Mol Ther. 2002;5:716–722.

    Article  CAS  PubMed  Google Scholar 

  122. Reich SJ, Auricchio A, Hildinger M, et al. Efficient trans-splicing in the retina expands the utility of adeno-associated virus as a vector for gene therapy. Hum Gene Ther. 2003;14:37–44.

    Article  CAS  PubMed  Google Scholar 

  123. Hirata RK, Russell DW . Design and packaging of adeno-associated virus gene targeting vectors. J Virol. 2000;74:4612–4620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. McCarty DM, Monahan PE, Samulski RJ . Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Therapy. 2001;8:1248–1254.

    Article  CAS  PubMed  Google Scholar 

  125. McCarty DM, Fu H, Monahan PE, et al. Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Therapy. 2003;10:2112–2118.

    Article  CAS  PubMed  Google Scholar 

  126. Folkman J, Watson K, Ingber D, Hanahan D . Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 1989;339:58–61.

    Article  CAS  PubMed  Google Scholar 

  127. Ma HI, Guo P, Li J, et al. Suppression of intracranial human glioma growth after intramuscular administration of an adeno-associated viral vector expressing angiostatin. Cancer Res. 2002;62:756–763.

    CAS  PubMed  Google Scholar 

  128. Davidoff AM, Nathwani AC, Spurbeck WW, et al. rAAV-mediated long-term liver-generated expression of an angiogenesis inhibitor can restrict renal tumor growth in mice. Cancer Res. 2002;62:3077–3083.

    CAS  PubMed  Google Scholar 

  129. Ma HI, Lin SZ, Chiang YH, et al. Intratumoral gene therapy of malignant brain tumor in a rat model with angiostatin delivered by adeno-associated viral (AAV) vector. Gene Therapy. 2002;9:2–11.

    Article  CAS  PubMed  Google Scholar 

  130. Shi W, Teschendorf C, Muzyczka N, Siemann DW . Adeno-associated virus-mediated gene transfer of endostatin inhibits angiogenesis and tumor growth in vivo. Cancer Gene Ther. 2002;9:513–521.

    Article  CAS  PubMed  Google Scholar 

  131. Xu R, Sun X, Tse LY, et al. Long-term expression of angiostatin suppresses metastatic liver cancer in mice. Hepatology. 2003;37:1451–1460.

    Article  CAS  PubMed  Google Scholar 

  132. Lalani AS, Chang B, Lin J, et al. Anti-tumor efficacy of human angiostatin using liver-mediated adeno-associated virus gene therapy. Mol Ther. 2004;9:56–66.

    Article  CAS  PubMed  Google Scholar 

  133. Zacchigna S, Zentilin L, Morini M, et al. AAV-mediated gene transfer of tissue inhibitor of metalloproteinases-1 inhibits vascular tumor growth and angiogenesis in vivo. Cancer Gene Ther. 2004;11:73–80.

    Article  CAS  PubMed  Google Scholar 

  134. Boehm T, Folkman J, Browder T, O’Reilly MS . Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature. 1997;390:404–407.

    Article  CAS  PubMed  Google Scholar 

  135. Yokoyama Y, Dhanabal M, Griffioen AW, Sukhatme VP, Ramakrishnan S . Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth. Cancer Res. 2000;60:2190–2196.

    CAS  PubMed  Google Scholar 

  136. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D . Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science. 1999;284:808–812.

    Article  CAS  PubMed  Google Scholar 

  137. Ponnazhagan S, Mahendra G, Kumar S, et al. Adeno-associated virus 2-mediated antiangiogenic cancer gene therapy: long-term efficacy of a vector encoding angiostatin and endostatin over vectors encoding a single factor. Cancer Res. 2004;64:1781–1787.

    Article  CAS  PubMed  Google Scholar 

  138. Li C, Ying C, Zhao H, Samulski RJ, van Dyke T . Antiangiogenic therapy of tumor with adeno-associated virus serotypes vectors encoding murine endostatin and angiostatin. 2004 (in preparation).

  139. Zhang JF, Hu C, Geng Y, Blatt LM, Taylor MW . Gene therapy with an adeno-associated virus carrying an interferon gene results in tumor growth suppression and regression. Cancer Gene Ther. 1996;3:31–38.

    PubMed  Google Scholar 

  140. Yoshida J, Mizuno M, Nakahara N, Colosi P . Antitumor effect of an adeno-associated virus vector containing the human interferon-beta gene on experimental intracranial human glioma. Jpn J Cancer Res. 2002;93:223–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mohr A, Henderson G, Dudus L, et al. AAV-encoded expression of TRAIL in experimental human colorectal cancer leads to tumor regression. Gene Therapy. 2004;11:534–543.

    Article  CAS  PubMed  Google Scholar 

  142. Wendtner CM, Kofler DM, Theiss HD, et al. Efficient gene transfer of CD40 ligand into primary B-CLL cells using recombinant adeno-associated virus (rAAV) vectors. Blood. 2002;100:1655–1661.

    Article  CAS  PubMed  Google Scholar 

  143. Liu DW, Tsao YP, Kung JT, et al. Recombinant adeno-associated virus expressing human papillomavirus type 16 E7 peptide DNA fused with heat shock protein DNA as a potential vaccine for cervical cancer. J Virol. 2000;74:2888–2894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jooss K, Yang Y, Fisher KJ, Wilson JM . Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol. 1998;72:4212–4223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zhang Y, Chirmule N, Gao G, Wilson J . CD40 ligand-dependent activation of cytotoxic T lymphocytes by adeno-associated virus vectors in vivo: role of immature dendritic cells. J Virol. 2000;74:8003–8010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Liu Y, Santin AD, Mane M, et al. Transduction and utility of the granulocyte-macrophage colony-stimulating factor gene into monocytes and dendritic cells by adeno-associated virus. J Interferon Cytokine Res. 2000;20:21–30.

    Article  PubMed  Google Scholar 

  147. Ponnazhagan S, Mahendra G, Curiel DT, Shaw DR . Adeno-associated virus type 2-mediated transduction of human monocyte-derived dendritic cells: implications for ex vivo immunotherapy. J Virol. 2001;75:9493–9501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Liu Y, Chiriva-Internati M, Grizzi F, et al. Rapid induction of cytotoxic T-cell response against cervical cancer cells by human papillomavirus type 16 E6 antigen gene delivery into human dendritic cells by an adeno-associated virus vector. Cancer Gene Ther. 2001;8:948–957.

    Article  CAS  PubMed  Google Scholar 

  149. Chiriva-Internati M, Liu Y, Salati E, et al. Efficient generation of cytotoxic T lymphocytes against cervical cancer cells by adeno-associated virus/human papillomavirus type 16 E7 antigen gene transduction into dendritic cells. Eur J Immunol. 2002;32:30–38.

    Article  CAS  PubMed  Google Scholar 

  150. Su H, Chang JC, Xu SM, Kan YW . Selective killing of AFP-positive hepatocellular carcinoma cells by adeno-associated virus transfer of the herpes simplex virus thymidine kinase gene. Hum Gene Ther. 1996;7:463–470.

    Article  CAS  PubMed  Google Scholar 

  151. Surosky RT, Urabe M, Godwin SG, et al. Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome. J Virol. 1997;71:7951–7959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mizuno M, Yoshida J, Colosi P, Kurtzman G . Adeno-associated virus vector containing the herpes simplex virus thymidine kinase gene causes complete regression of intracerebrally implanted human gliomas in mice, in conjunction with ganciclovir administration. Jpn J Cancer Res. 1998;89:76–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fukui T, Hayashi Y, Kagami H, et al. Suicide gene therapy for human oral squamous cell carcinoma cell lines with adeno-associated virus vector. Oral Oncol. 2001;37:211–215.

    Article  CAS  PubMed  Google Scholar 

  154. Kanazawa T, Urabe M, Mizukami H, et al. Gamma-rays enhance rAAV-mediated transgene expression and cytocidal effect of AAV-HSVtk/ganciclovir on cancer cells. Cancer Gene Ther. 2001;8:99–106.

    Article  CAS  PubMed  Google Scholar 

  155. Kanazawa T, Mizukami H, Nishino H, et al. Topoisomerase inhibitors enhance the cytocidal effect of AAV-HSVtk/ganciclovir on head and neck cancer cells. Int J Oncol. 2004;25:729–735.

    CAS  PubMed  Google Scholar 

  156. Veldwijk MR, Schiedlmeier B, Kleinschmidt JA, Zeller WJ, Fruehauf S . Superior gene transfer into solid tumour cells than into human mobilised peripheral blood progenitor cells using helpervirus-free adeno-associated viral vector stocks. Eur J Cancer. 1999;35:1136–1142.

    Article  CAS  PubMed  Google Scholar 

  157. Veldwijk MR, Fruehauf S, Schiedlmeier B, Kleinschmidt JA, Zeller WJ . Differential expression of a recombinant adeno-associated virus 2 vector in human CD34+ cells and breast cancer cells. Cancer Gene Ther. 2000;7:597–604.

    Article  CAS  PubMed  Google Scholar 

  158. Fruehauf S, Veldwijk MR, Berlinghoff S, et al. Gene therapy for sarcoma. Cells Tissues Organs. 2002;172:133–144.

    Article  CAS  PubMed  Google Scholar 

  159. Xu D, McCarty D, Fernandes A, Fisher M, Samulski RJ, Juliano RL . Delivery of small interfering RNA by self complementary recombinant adeno-associated virus (scAAV) vector. Mol Ther. 2005;11:523–530.

    Article  PubMed  CAS  Google Scholar 

  160. Qazilbash MH, Xiao X, Seth P, Cowan KH, Walsh CE . Cancer gene therapy using a novel adeno-associated virus vector expressing human wild-type p53. Gene Therapy. 1997;4:675–682.

    Article  CAS  PubMed  Google Scholar 

  161. Zhang X, Chen Z, Chen Y, Tong T . Delivering antisense telomerase RNA by a hybrid adenovirus/adeno-associated virus significantly suppresses the malignant phenotype and enhances cell apoptosis of human breast cancer cells. Oncogene. 2003;22:2405–2416.

    Article  CAS  PubMed  Google Scholar 

  162. Dumon KR, Ishii H, Vecchione A, et al. Fragile histidine triad expression delays tumor development and induces apoptosis in human pancreatic cancer. Cancer Res. 2001;61:4827–4836.

    CAS  PubMed  Google Scholar 

  163. Kunke D, Grimm D, Denger S, et al. Preclinical study on gene therapy of cervical carcinoma using adeno-associated virus vectors. Cancer Gene Ther. 2000;7:766–777.

    Article  CAS  PubMed  Google Scholar 

  164. Okada H, Miyamura K, Itoh T, et al. Gene therapy against an experimental glioma using adeno-associated virus vectors. Gene Therapy. 1996;3:957–964.

    CAS  PubMed  Google Scholar 

  165. Su H, Lu R, Ding R, Kan YW . Adeno-associated viral-mediated gene transfer to hepatoma: thymidine kinase/interleukin 2 is more effective in tumor killing in non-ganciclovir (GCV)-treated than in GCV-treated animals. Mol Ther. 2000;1:509–515.

    Article  CAS  PubMed  Google Scholar 

  166. Janouskova O, Sima P, Kunke D . Combined suicide gene and immunostimulatory gene therapy using AAV-mediated gene transfer to HPV-16 transformed mouse cell: decrease of oncogenicity and induction of protection. Int J Oncol. 2003;22:569–577.

    CAS  PubMed  Google Scholar 

  167. Sun X, Krissansen GW, Fung PW, et al. Anti-angiogenic therapy subsequent to adeno-associated-virus-mediated immunotherapy eradicates lymphomas that disseminate to the liver. Int J Cancer. 2004;113:670–677.

    Article  CAS  Google Scholar 

  168. Xie Q, Somasundaram T, Bhatia S, Bu W, Chapman MS . Structure determination of adeno-associated virus 2: three complete virus particles per asymmetric unit. Acta Crystallogr D Biol Crystallogr. 2003;59:959–970.

    Article  PubMed  CAS  Google Scholar 

  169. Shi W, Bartlett JS . RGD inclusion in VP3 provides adeno-associated virus type 2 (AAV2)-based vectors with a heparan sulfate-independent cell entry mechanism. Mol Ther. 2003;7:515–525.

    Article  CAS  PubMed  Google Scholar 

  170. Sieger S, Jiang S, Kleinschmidt J, et al. Tumor-specific gene expression using regulatory elements of the glucose transporter isoform 1 gene. Cancer Gene Ther. 2004;11:41–51.

    Article  CAS  PubMed  Google Scholar 

  171. Ruan H, Su H, Hu L, et al. A hypoxia-regulated adeno-associated virus vector for cancer-specific gene therapy. Neoplasia. 2001;3:255–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nicklin SA, Dishart KL, Buening H, et al. Transductional and transcriptional targeting of cancer cells using genetically engineered viral vectors. Cancer Lett. 2003;201:165–173.

    Article  CAS  PubMed  Google Scholar 

  173. Perabo L, Buning H, Kofler DM, et al. In vitro selection of viral vectors with modified tropism: the adeno-associated virus display. Mol Ther. 2003;8:151–157.

    Article  CAS  PubMed  Google Scholar 

  174. Muller OJ, Kaul F, Weitzman MD, et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol. 2003;21:1040–1046.

    Article  PubMed  CAS  Google Scholar 

  175. Haberman RP, McCown TJ, Samulski RJ . Inducible long-term gene expression in brain with adeno-associated virus gene transfer. Gene Therapy. 1998;5:1604–1611.

    Article  CAS  PubMed  Google Scholar 

  176. Ye X, Rivera VM, Zoltick P, et al. Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfer. Science. 1999;283:88–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jennifer Giles for her critic reading of the manuscript. This work was supported by NIH research grant 5-RO1-CA86310 to T van Dyke, 5 PO1 GM 059299, 5 PO1 HL 066973, 2 PO1 HL 051818 and Goldhirsh Foundation Brain Tumor Research Award to RJ Samulski.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Terry van Dyke or Richard Jude Samulski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Bowles, D., van Dyke, T. et al. Adeno-associated virus vectors: potential applications for cancer gene therapy. Cancer Gene Ther 12, 913–925 (2005). https://doi.org/10.1038/sj.cgt.7700876

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700876

Keywords

This article is cited by

Search

Quick links