Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cotransfection of dendritic cells with RNA coding for HER-2/neu and 4-1BBL increases the induction of tumor antigen specific cytotoxic T lymphocytes

Abstract

Ribonucleic acid (RNA) transfection of dendritic cells (DCs) was shown to be highly efficient in eliciting CD8+ and CD4+ T-cell responses. We analyzed whether electroporation of DCs with RNA coding for a tumor-associated antigen (TAA) would elicit antigen-specific effector cytotoxic T lymphocyte (CTL) responses and whether these responses could be modulated by cotransfection with a second specific synthetic RNA. Therefore in vitro generated human monocyte-derived DCs were electroporated with in vitro transcribed RNA (in vitro transcript, IVT) encoding the TAA HER-2/neu. Additionally, these cells were cotransfected with IVT coding for human 4-1BBL. Transfection of DCs with 4-1BBL-IVT did not alter their typical phenotype. However, it increased the expression of the costimulatory molecules CD80 and CD40. Coadministration of HER-2/neu- and 4-1BBL-IVT resulted in an increased specific lysis of target cells by the in vitro induced CTL lines, indicating that 4-1BBL enhances their ability to elicit primary CTL responses. Interestingly, transfection of DCs with 4-1BBL-IVT did not augment their capacity to stimulate allogeneic lymphocyte responses. The here established approach of cotransfection of DCs with tumor-RNA and a second specific IVT could improve and optimize the in vitro manipulation of DCs for the induction of antigen-specific CTL responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Mellman I, Steinman RM . Dendritic cells: specialized and regulated antigen processing machines. Cell. 2001;106:255–258.

    Article  CAS  PubMed  Google Scholar 

  2. Steinman RM . The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–296.

    Article  CAS  PubMed  Google Scholar 

  3. Boczkowski D, Nair SK, Snyder D, Gilboa E . Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med. 1996;184:465–472.

    Article  CAS  PubMed  Google Scholar 

  4. Grünebach F, Müller MR, Nencioni A, Brossart P . Delivery of tumor-derived RNA for the induction of cytotoxic T-lymphocytes. Gene Ther. 2003;10:367–374.

    Article  PubMed  Google Scholar 

  5. Hoerr I, Obst R, Rammensee HG, Jung G . In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol. 2000;30:1–7.

    Article  CAS  PubMed  Google Scholar 

  6. Müller MR, Grünebach F, Nencioni A, Brossart P . Transfection of dendritic cells with RNA induces CD4- and CD8-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes. J Immunol. 2003;170:5892–5896.

    Article  PubMed  Google Scholar 

  7. Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E . Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol. 1998;16:364–369.

    Article  CAS  PubMed  Google Scholar 

  8. DeBenedette MA, Shahinian A, Mak TW, Watts TH . Costimulation of CD28- T lymphocytes by 4-1BB ligand. J Immunol. 1997;158:551–559.

    CAS  PubMed  Google Scholar 

  9. Goodwin RG, Din WS, Davis-Smith T, et al. Molecular cloning of a ligand for the inducible T cell gene 4-1BB: a member of an emerging family of cytokines with homology to tumor necrosis factor. Eur J Immunol. 1993;23:2631–2641.

    Article  CAS  PubMed  Google Scholar 

  10. Salih HR, Kiener PA, Nussler V . 4-1 BB ligand--just another costimulating molecule? Int J Clin Pharmacol Ther. 2002;40:348–353.

    Article  CAS  PubMed  Google Scholar 

  11. Vinay DS, Kwon BS . Role of 4-1BB in immune responses. Semin Immunol. 1998;10:481–489.

    Article  CAS  PubMed  Google Scholar 

  12. Brossart P, Grünebach F, Stuhler G, et al. Generation of functional human dendritic cells from adherent peripheral blood monocytes by CD40 ligation in the absence of granulocyte-macrophage colony-stimulating factor. Blood. 1998;92:4238–4247.

    CAS  PubMed  Google Scholar 

  13. Zhou LJ, Tedder TF . CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci USA. 1996;93:2588–2592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gendler SJ, Lancaster CA, Taylor-Papadimitriou J, et al. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem. 1990;265:15286–15293.

    CAS  PubMed  Google Scholar 

  15. Van Tendeloo VF, Ponsaerts P, Lardon F, et al. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood. 2001;98:49–56.

    Article  CAS  PubMed  Google Scholar 

  16. Brossart P, Stuhler G, Flad T, et al. Her-2/neu-derived peptides are tumor-associated antigens expressed by human renal cell and colon carcinoma lines and are recognized by in vitro induced specific cytotoxic T lymphocytes. Cancer Res. 1998;58:732–736.

    CAS  PubMed  Google Scholar 

  17. Brossart P, Heinrich KS, Stuhler G, et al. Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood. 1999;93:4309–4317.

    CAS  PubMed  Google Scholar 

  18. Cerundolo V, Hermans IF, Salio M . Dendritic cells: a journey from laboratory to clinic. Nat Immunol. 2004;5:7–10.

    Article  CAS  PubMed  Google Scholar 

  19. Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ . Dendritic cell immunotherapy: mapping the way. Nat Med. 2004;10:475–480.

    Article  CAS  PubMed  Google Scholar 

  20. Morse MA, Zhou LJ, Tedder TF, Lyerly HK, Smith C . Generation of dendritic cells in vitro from peripheral blood mononuclear cells with granulocyte-macrophage-colony-stimulating factor, interleukin-4, and tumor necrosis factor-alpha for use in cancer immunotherapy. Ann Surg. 1997;226:6–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Romani N, Gruner S, Brang D, et al. Proliferating dendritic cell progenitors in human blood. J Exp Med. 1994;180:83–93.

    Article  CAS  PubMed  Google Scholar 

  22. Whiteside TL, Odoux C . Dendritic cell biology and cancer therapy. Cancer Immunol Immunother. 2004;53:240–248.

    Article  PubMed  Google Scholar 

  23. Su Z, Vieweg J, Weizer AZ, et al. Enhanced induction of telomerase-specific CD4(+) T cells using dendritic cells transfected with RNA encoding a chimeric gene product. Cancer Res. 2002;62:5041–5048.

    CAS  PubMed  Google Scholar 

  24. Nair S, Boczkowski D, Moeller B, Dewhirst M, Vieweg J, Gilboa E . Synergy between tumor immunotherapy and antiangiogenic therapy. Blood. 2003;102:964–971.

    Article  CAS  PubMed  Google Scholar 

  25. DeBenedette MA, Wen T, Bachmann MF, et al. Analysis of 4-1BB ligand (4-1BBL)-deficient mice and of mice lacking both 4-1BBL and CD28 reveals a role for 4-1BBL in skin allograft rejection and in the cytotoxic T cell response to influenza virus. J Immunol. 1999;163:4833–4841.

    CAS  PubMed  Google Scholar 

  26. Tan JT, Whitmire JK, Ahmed R, Pearson TC, Larsen CP . 4-1BB ligand, a member of the TNF family, is important for the generation of antiviral CD8T cell responses. J Immunol. 1999;163:4859–4868.

    CAS  PubMed  Google Scholar 

  27. Tan JT, Whitmire JK, Murali-Krishna K, et al. 4-1BB costimulation is required for protective anti-viral immunity after peptide vaccination. J Immunol. 2000;164:2320–2325.

    Article  CAS  PubMed  Google Scholar 

  28. Cooper D, Bansal-Pakala P, Croft M . 4-1BB (CD137) controls the clonal expansion and survival of CD8T cells in vivo but does not contribute to the development of cytotoxicity. Eur J Immunol. 2002;32:521–529.

    Article  CAS  PubMed  Google Scholar 

  29. Bukczynski J, Wen T, Watts TH . Costimulation of human CD28-T cells by 4-1BB ligand. Eur J Immunol. 2003;33:446–454.

    Article  CAS  PubMed  Google Scholar 

  30. Saoulli K, Lee SY, Cannons JL, et al. CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand. J Exp Med. 1998;187:1849–1862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wiethe C, Dittmar K, Doan T, Lindenmaier W, Tindle R . Provision of 4-1BB ligand enhances effector and memory CTL responses generated by immunization with dendritic cells expressing a human tumor-associated antigen. J Immunol. 2003;170:2912–2922.

    Article  CAS  PubMed  Google Scholar 

  32. Diehl L, van Mierlo GJ, den Boer AT, et al. In vivo triggering through 4-1BB enables Th-independent priming of CTL in the presence of an intact CD28 costimulatory pathway. J Immunol. 2002;168:3755–3762.

    Article  CAS  PubMed  Google Scholar 

  33. Melero I, Bach N, Hellstrom KE, Aruffo A, Mittler RS, Chen L . Amplification of tumor immunity by gene transfer of the co-stimulatory 4-1BB ligand: synergy with the CD28 co-stimulatory pathway. Eur J Immunol. 1998;28:1116–1121.

    Article  CAS  PubMed  Google Scholar 

  34. Pollok KE, Kim YJ, Zhou Z, et al. Inducible T cell antigen 4-1BB. Analysis of expression and function. J Immunol. 1993;150:771–781.

    CAS  PubMed  Google Scholar 

  35. Caux C, Massacrier C, Vanbervliet B, et al. Activation of human dendritic cells through CD40 cross-linking. J Exp Med. 1994;180:1263–1272.

    Article  CAS  PubMed  Google Scholar 

  36. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G . Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med. 1996;184:747–752.

    Article  CAS  PubMed  Google Scholar 

  37. Flores-Romo L, Bjorck P, Duvert V, Van Kooten C, Saeland S, Banchereau J . CD40 ligation on human cord blood CD34+ hematopoietic progenitors induces their proliferation and differentiation into functional dendritic cells. J Exp Med. 1997;185:341–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Laderach D, Movassagh M, Johnson A, Mittler RS, Galy A . 4-1BB co-stimulation enhances human CD8(+) T cell priming by augmenting the proliferation and survival of effector CD8(+) T cells. Int Immunol. 2002;14:1155–1167.

    Article  CAS  PubMed  Google Scholar 

  39. Wen T, Bukczynski J, Watts TH . 4-1BB ligand-mediated costimulation of human T cells induces CD4 and CD8T cell expansion, cytokine production, and the development of cytolytic effector function. J Immunol. 2002;168:4897–4906.

    Article  CAS  PubMed  Google Scholar 

  40. Bonehill A, Heirman C, Tuyaerts S, et al. Efficient presentation of known HLA class II-restricted MAGE-A3 epitopes by dendritic cells electroporated with messenger RNA encoding an invariant chain with genetic exchange of class II-associated invariant chain peptide. Cancer Res. 2003;63:5587–5594.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Bruni Schuster, Sylvia Stephan, and Regina Heselmaier for excellent technical assistance. This work was supported by Deutsche Forschungsgemeinschaft (SFB 510, Project B2) and University of Tübingen (fortüne-project, F.1282620.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Brossart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grünebach, F., Kayser, K., Weck, M. et al. Cotransfection of dendritic cells with RNA coding for HER-2/neu and 4-1BBL increases the induction of tumor antigen specific cytotoxic T lymphocytes. Cancer Gene Ther 12, 749–756 (2005). https://doi.org/10.1038/sj.cgt.7700842

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700842

Keywords

This article is cited by

Search

Quick links