Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Preclinical full-scale evaluation of dendritic cells transfected with autologous tumor-mRNA for melanoma vaccination

Abstract

Most cancer vaccines to date have made use of common tumor antigens or allogenic cancer cell lines. The majority of tumor antigens may, however, be unique patient-specific antigens. Dendritic cells (DCs) are the most potent antigen-presenting cells known. The present report is a full-scale preclinical evaluation of autologous DCs transfected with autologous tumor-mRNA (tDCs) for vaccination in malignant melanoma. By using autologous tumor-mRNA, we intend to make the DCs present a broad spectrum of tumor-associated antigens relevant to each individual patient. Previously, we have described effective methods for mRNA-transfection into DCs by square-wave electroporation and for generating large numbers of DCs. Here, we demonstrate the ability of tDCs, made under full-scale vaccine conditions, to generate in vitro T-cell responses specific for antigens encoded by the transfected tumor-mRNA. T-cell proliferation assays demonstrated tDC-specific responses for all six patients tested. Responses were further studied by IFNγ ELISPOT and Bioplex cytokine assays (two patients) and by experiments on isolated CD4+ and CD8+ T cells, including HLA-blockage (one patient). Moreover, we describe the results of extensive tumor-RNA analysis using Agilent Bioanalyser, a method that we have implemented in the clinical protocol. Based on this preclinical evaluation, a vaccine trial has been started.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Eigentler TK, Caroli UM, Radny P, Garbe C . Palliative therapy of disseminated malignant melanoma: a systematic review of 41 randomised clinical trials. Lancet Oncol. 2003;4:748–759.

    Article  CAS  PubMed  Google Scholar 

  2. Parmiani G, Anichini A, Fossati G . Cellular immune response against autologous human malignant melanoma: are in vitro studies providing a framework for a more effective immunotherapy? J Nat Cancer Inst. 1990;82:361–370.

    Article  CAS  PubMed  Google Scholar 

  3. Clemente CG, Mihm Jr MC, Bufalino R, Zurrida S, Collini P, Cascinelli N . Prognostic value of tumour infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer. 1996;77:1303–1310.

    Article  CAS  PubMed  Google Scholar 

  4. Marchand M, Weynants P, Rankin E, et al. Tumour regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3. Int J Cancer. 1995;63:883–885.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenberg SA, Yang JC, Schwartzentruber DJ, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med. 1998;4:321–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang F, Bade E, Kuniyoshi C, et al. Phase I trial of a MART-1 peptide vaccine with incomplete Freund's adjuvant for resected high-risk melanoma. Clin Cancer Res. 1999;5:2756–2765.

    CAS  PubMed  Google Scholar 

  7. Boczkowski D, Nair SK, Nam JH, Lyerly HK, Gilboa E . Induction of tumour immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumour cells. Cancer Res. 2000;60:1028–1034.

    CAS  PubMed  Google Scholar 

  8. Srivastava PK . Do human cancers express shared protective antigens? Or the necessity of remembrance of things past. Semin Immunol. 1996;8:295–302.

    Article  CAS  PubMed  Google Scholar 

  9. Slingluff CL . Targeting unique tumor antigens and modulating the cytokine environment may improve immunotherapy for tumors with immune escape mechanisms. Cancer Immunol. immunother. 1999;48:371–373.

    Article  CAS  PubMed  Google Scholar 

  10. Anichini A, Mortarini R, Maccalli C, et al. Cytotoxic T cells directed to tumour antigens not expressed on normal melanocytes dominate HLA-A2.1-restricted immune repertoire to melanoma. J Immunol. 1996;156:208–217.

    CAS  PubMed  Google Scholar 

  11. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature. 1998;392:245–252.

    Article  CAS  PubMed  Google Scholar 

  12. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumour lysate-pulsed dendritic cells. Nat Med. 1998;4:328–332.

    Article  CAS  PubMed  Google Scholar 

  13. Schuler G, Schuler-Thurner B, Steinman RM . The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol. 2003;15:138–147.

    Article  CAS  PubMed  Google Scholar 

  14. Banchereau J, Palucka AK, Dhodapkar M, et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res. 2001;61:6451–6458.

    CAS  PubMed  Google Scholar 

  15. Saebøe-Larssen S, Fossberg E, Gaudernack G . mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT). J Immunol Methods. 2002;259:191–203.

    Article  PubMed  Google Scholar 

  16. Mu LJ, Gaudernack G, Saebøe-Larssen S, Hammerstad H, Tierens A, Kvalheim G . A protocol for generation of clinical grade mRNA-transfected monocyte-derived dendritic cells for cancer vaccines. Scandi J Immunol. 2003;58:578–586.

    Article  CAS  Google Scholar 

  17. Mueller O, Hahnenberger K, Dittmann M, et al. A microfluidic system for high-speed reproducible DNA sizing and quantitation. Electrophoresis. 2000;21:128–134.

    Article  CAS  PubMed  Google Scholar 

  18. Gottwald E, Müller O, Polten A . Semiquantitative reverse transcription-polymerase chain reaction with the Agilent 2100 Bioanalyzer. Electrophoresis. 2001;22:4016–4022.

    Article  CAS  PubMed  Google Scholar 

  19. Liu CH, Ma WL, Shi R, Zhang B, Ou YQ, Zheng WL . Gene expression study of Saccharomyces cerevisiae with the Agilent 2100 bioanalyser. Br J Biomed Sci. 2003;60:22–25.

    Article  CAS  PubMed  Google Scholar 

  20. Ricicova M, Palkova Z . Comparative analyses of Saccharomyces cervesiae RNAs using Agilent RNA 6000 Nano Assay and agarose gel electrophoresis. FEMS Yeast Res. 2003;4:119–122.

    Article  CAS  PubMed  Google Scholar 

  21. Nussenzweig MC, Steinman RM . Contribution of dendritic cells to stimulation of the murine syngeneic mixed leukocyte reaction. J Exp Med. 1980;151:1196–1212.

    Article  CAS  PubMed  Google Scholar 

  22. Verhasselt V, Vosters O, Beuneu C, Nicaise C, Stordeur P, Goldman M . Induction of FOXP3-expressing regulatory CD4pos T cells by human mature autologous dendritic cells. Eur J Immunol. 2004;34:762–772.

    Article  CAS  PubMed  Google Scholar 

  23. Smolen JS, Chused TM, Novotny EA, Steinberg AD . The human autologous mixed lymphocyte reaction. III. Immune circuits. J Immunol. 1982;129:1050–1053.

    CAS  PubMed  Google Scholar 

  24. Steinberg AD, Smith HR, Laskin CA, Steinberg BJ, Smolen JS . Studies of immune abnormalities in systemic lupus erythematosus. Am J Kidney Dis. 1982;2:101–110.

    CAS  PubMed  Google Scholar 

  25. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Ann Rev Immunol. 2000;18:767–811.

    Article  CAS  Google Scholar 

  26. O’Neill DW, Adams, S, Bhardwaj N . Manipulating dendritic cell biology for the active immunotherapy of cancer. Blood. 2004;104:2235–2246.

    Article  PubMed  Google Scholar 

  27. Rollins BJ . Chemokines. Blood. 1997;90:909–928.

    CAS  PubMed  Google Scholar 

  28. De Vries IJ, Krooshoop DJ, Scharenborg NM, et al. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res. 2003;63:12–17.

    CAS  PubMed  Google Scholar 

  29. Morse MA, Coleman RE, Akabani G, Niehaus N, Coleman D, Lyerly HK . Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res. 1999;59:56–58.

    CAS  PubMed  Google Scholar 

  30. Figdor CG, De Vries IJ, Lesterhuis WJ, Melief CJ . Dendritic cell immunotherapy: mapping the way. Nat Med. 2004;10:475–480.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Norwegian Ministry of Health (Gene Therapy Fund) and the Norwegian Cancer Society. The authors thank Ms Hege Hammerstad, Ms Inger-Lise Haakensen and Mrs Anne Brunsvig for excellent work on DC generation, and the research nurses Kristin Øwre and Lone Hegg for excellent patient care. We also thank Dr Carrie Grimsrud for helpful contribution on total RNA extraction and Professor Olav Kaalhus for valuable advice on statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon A Kyte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyte, J., Kvalheim, G., Aamdal, S. et al. Preclinical full-scale evaluation of dendritic cells transfected with autologous tumor-mRNA for melanoma vaccination. Cancer Gene Ther 12, 579–591 (2005). https://doi.org/10.1038/sj.cgt.7700837

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700837

Keywords

This article is cited by

Search

Quick links