Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene therapy vectors containing CArG elements from the Egr1 gene are activated by neutron irradiation, cisplatin and doxorubicin

Abstract

Combining gene therapy with radiotherapy and chemotherapy holds potential to increase the efficacy of cancer treatment, while minimizing side effects. We tested the responsiveness of synthetic gene promoters containing CArG elements from the Early Growth Response 1 (Egr1) gene after neutron irradiation, doxorubicin and cisplatin. Human MCF-7 breast adenocarcinoma and U373-MG glioblastoma cells were transfected with plasmids containing CArG promoters controlling the expression of the green fluorescent protein (GFP). Exposing the cells to neutrons, doxorubicin or cisplatin resulted in a significant induction of transgene expression. Therapeutic advantage was demonstrated by replacing the reporter with the herpes simplex virus thymidine kinase (HSVtk), able to convert the prodrug ganciclovir (GCV) into a cytotoxin. A 1.3 Gy neutron dose caused 49% growth inhibition in MCF-7 cells, which increased to 63% in irradiated CArG-HSVtk-transfectants treated with GCV. Exposure to 0.5 μM cisplatin or 0.01 μM doxorubicin induced a growth inhibition of 25–30% in MCF-7 cells. In the presence of GCV, this value increased to 65–70% in cells transfected with the CArG promoter constructs driving the expression of HSVtk. These data indicate that combining CArG-mediated HSVtk/GCV suicide gene therapy with radio- and chemotherapy can enhance antitumor toxicity, and validates future in vivo investigations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Forman JD, Yudelev M, Bolton S, Tekyi-Mensah S, Maughan R . Fast neutron irradiation for prostate cancer. Cancer Metastasis Rev. 2002;21:131–135.

    Article  CAS  PubMed  Google Scholar 

  2. Auberger T, Reuschel W . The role of fast neutrons in the treatment of squamous cell carcinomas of the head and neck: The European experience. Recent Results Cancer Res. 1998;150:137–147.

    Article  CAS  PubMed  Google Scholar 

  3. Grigsby PW . Radiation Therapy Oncology Group clinical trials for carcinoma of the cervix. Int J Gynecol Cancer. 1999;9:439–447.

    Article  PubMed  Google Scholar 

  4. Schwarz R, Krull A, Lessel A, et al. European results of neutron therapy in soft tissue sarcomas. Recent Results Cancer Res. 1998;150:100–112.

    Article  CAS  PubMed  Google Scholar 

  5. Catterall M, Errington RD, Bewley DK . Fast neutrons in the treatment of locally advanced breast cancer. Eur J Surg Oncol. 1987;13:315–319.

    CAS  PubMed  Google Scholar 

  6. Halpern J, Maor MH, Hussey DH, Henkelmann GC, Sampiere V, McNeese MD . Locally advanced breast cancer treated with neutron beams: long-term follow-up in 28 patients. Int J Radiat Oncol Biol Phys. 1990;18:825–831.

    Article  CAS  PubMed  Google Scholar 

  7. Griffin T, Pajak T, Laramore G, Davis L . Analysis of neutron radiotherapy treatment complications. Bull Cancer. 1986;73:582–586.

    CAS  PubMed  Google Scholar 

  8. Scott SD, Greco O . Radiation and hypoxia inducible gene therapy systems. Cancer Metastasis Rev. 2004;23:269–276.

    Article  CAS  PubMed  Google Scholar 

  9. Maughan RL, Blosser GF, Blosser EB, et al. A multirod collimator for neutron therapy. Int J Radiat Oncol Biol Phys. 1996;34:411–420.

    Article  CAS  PubMed  Google Scholar 

  10. Hallahan DE, Mauceri HJ, Seung LP, et al. Spatial and temporal control of gene therapy using ionizing radiation. Nat Med. 1995;1:786–791.

    Article  CAS  PubMed  Google Scholar 

  11. Weichselbaum RR, Hallahan DE, Beckett MA, et al. Gene therapy targeted by radiation preferentially radiosensitizes tumor cells. Cancer Res. 1994;54:4266–4269.

    CAS  PubMed  Google Scholar 

  12. Joki T, Nakamura M, Ohno T . Activation of the radiosensitive EGR-1 promoter induces expression of the herpes simplex virus thymidine kinase gene and sensitivity of human glioma cells to ganciclovir. Hum Gene Ther. 1995;6:1507–1513.

    Article  CAS  PubMed  Google Scholar 

  13. Senzer N, Mani S, Rosemurgy A, et al. TNFerade biologic, an adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene: a phase I study in patients with solid tumors. J Clin Oncol. 2004;22:592–601.

    Article  CAS  PubMed  Google Scholar 

  14. Datta R, Rubin E, Sukhatme V, et al. Ionizing radiation activates transcription of the EGR1 gene via CArG elements. Proc Natl Acad Sci USA. 1992;89:10149–10153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Datta R, Taneja N, Sukhatme VP, Qureshi SA, Weichselbaum R, Kufe DW . Reactive oxygen intermediates target CC(A/T)6GG sequences to mediate activation of the early growth response 1 transcription factor gene by ionizing radiation. Proc Natl Acad Sci USA. 1993;90:2419–2422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marples B, Scott SD, Hendry JH, Embleton MJ, Lashford LS, Margison GP . Development of synthetic promoters for radiation-mediated gene therapy. Gene Therapy. 2000;7:511–517.

    Article  CAS  PubMed  Google Scholar 

  17. Scott SD, Joiner MC, Marples B . Optimizing radiation-responsive gene promoters for radiogenetic cancer therapy. Gene Therapy. 2002;9:1396–1402.

    Article  CAS  PubMed  Google Scholar 

  18. Scott SD, Marples B, Hendry JH, et al. A radiation-controlled molecular switch for use in gene therapy of cancer. Gene Therapy. 2000;7:1121–1125.

    Article  CAS  PubMed  Google Scholar 

  19. Greco O, Marples B, Dachs GU, Williams KJ, Patterson AV, Scott SD . Novel chimeric gene promoters responsive to hypoxia and ionizing radiation. Gene Therapy. 2002;9:1403–1411.

    Article  CAS  PubMed  Google Scholar 

  20. Park JO, Lopez CA, Gupta VK, et al. Transcriptional control of viral gene therapy by cisplatin. J Clin Invest. 2002;110:403–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Quinones A, Dobberstein KU, Rainov NG . The egr-1 gene is induced by DNA-damaging agents and non-genotoxic drugs in both normal and neoplastic human cells. Life Sci. 2003;72:2975–2992.

    Article  CAS  PubMed  Google Scholar 

  22. Saadane N, Alpert L, Chalifour LE . TAFII250, Egr-1, and D-type cyclin expression in mice and neonatal rat cardiomyocytes treated with doxorubicin. Am J Physiol. 1999;276:H803–H814.

    Article  CAS  PubMed  Google Scholar 

  23. Decatris MP, Sundar S, O'Byrne KJ . Platinum-based chemotherapy in metastatic breast cancer: current status. Cancer Treat Rev. 2004;30:53–81.

    Article  CAS  PubMed  Google Scholar 

  24. Biganzoli L, Minisini A, Aapro M, Di Leo A . Chemotherapy for metastatic breast cancer. Curr Opin Obstet Gynecol. 2004;16:37–41.

    Article  PubMed  Google Scholar 

  25. Fillat C, Carrio M, Cascante A, Sangro B . Suicide gene therapy mediated by the Herpes Simplex virus thymidine kinase gene/Ganciclovir system: fifteen years of application. Curr Gene Ther. 2003;3:13–26.

    Article  CAS  PubMed  Google Scholar 

  26. Teh BS, Aguilar-Cordova E, Kernen K, et al. Phase I/II trial evaluating combined radiotherapy and in situ gene therapy with or without hormonal therapy in the treatment of prostate cancer—a preliminary report. Int J Radiat Oncol Biol Phys. 2001;51:605–613.

    Article  CAS  PubMed  Google Scholar 

  27. Freytag SO, Khil M, Stricker H, et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res. 2002;62:4968–4976.

    CAS  PubMed  Google Scholar 

  28. Parada C, Hernandez Losa J, Guinea J, et al. Adenovirus E1a protein enhances the cytotoxic effects of the herpes thymidine kinase-ganciclovir system. Cancer Gene Ther. 2003;10:152–160.

    Article  CAS  PubMed  Google Scholar 

  29. Tong X, Shine DH, Agoulnik I, et al. Adenovirus mediated thymidine kinase gene therapy may enhance sensitivity of ovarian cancer cells to chemotherapeutic agents. Anticancer Res. 1998;18:3421–3426.

    CAS  PubMed  Google Scholar 

  30. Maughan RL, Powers WE, Blosser HG . A superconducting cyclotron for neutron radiation therapy. Med Phys. 1994;21:779–785.

    Article  CAS  PubMed  Google Scholar 

  31. Krull A, Schwarz R, Brackrock S, et al. Neutron therapy in malignant salivary gland tumors: results at European centers. Recent Results Cancer Res. 1998;150:88–99.

    Article  CAS  PubMed  Google Scholar 

  32. Black ME, Newcomb TG, Wilson HM, Loeb LA . Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc Natl Acad Sci USA. 1996;93:3525–3529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kokoris MS, Sabo P, Adman ET, Black ME . Enhancement of tumor ablation by a selected HSV-1 thymidine kinase mutant. Gene Therapy. 1999;6:1415–1426.

    Article  CAS  PubMed  Google Scholar 

  34. Thiel G, Cibelli G . Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol. 2002;193:287–292.

    Article  CAS  PubMed  Google Scholar 

  35. Meyer RG, Kupper JH, Kandolf R, Rodemann HP . Early growth response-1 gene (Egr-1) promoter induction by ionizing radiation in U87 malignant glioma cells in vitro. Eur J Biochem. 2002;269:337–346.

    Article  CAS  PubMed  Google Scholar 

  36. Britten RA, Peters LJ, Murray D . Biological factors influencing the RBE of neutrons: implications for their past, present and future use in radiotherapy. Radiat Res. 2001;156:125–135.

    Article  CAS  PubMed  Google Scholar 

  37. Barendsen GW . RBE–LET relationships for different types of lethal radiation damage in mammalian cells: comparison with DNA dsb and an interpretation of differences in radiosensitivity. Int J Radiat Biol. 1994;66:433–436.

    Article  CAS  PubMed  Google Scholar 

  38. Goodhead DT . Molecular and cell models of biological effects of heavy ion radiation. Radiat Environ Biophys. 1995;34:67–72.

    Article  CAS  PubMed  Google Scholar 

  39. Balcer-Kubiczek EK, Harrison GH, Xu JF, Gutierrez PL . Coordinate late expression of trefoil peptide genes (pS2/TFF1 and ITF/TFF3) in human breast, colon, and gastric tumor cells exposed to X-rays. Mol Cancer Ther. 2002;1:405–415.

    CAS  PubMed  Google Scholar 

  40. Balcer-Kubiczek EK, Zhang XF, Harrison GH, et al. Delayed expression of hpS2 and prolonged expression of CIP1/WAF1/SDI1 in human tumour cells irradiated with X-rays, fission neutrons or 1 GeV/nucleon Fe ions. Int J Radiat Biol. 1999;75:529–541.

    Article  CAS  PubMed  Google Scholar 

  41. Woloschak GE, Chang LCM . Differential modulation of specific gene expression following high- and low-LET radiations. Radiat Res. 1990;124:183–187.

    Article  CAS  PubMed  Google Scholar 

  42. Woloschak GE, Chang-Liu CM . Modulation of expression of genes encoding nuclear proteins following exposure to JANUS neutrons or gamma-rays. Cancer Lett. 1995;97:169–175.

    Article  CAS  PubMed  Google Scholar 

  43. Lucke-Huhle C . Similarities between human ataxia fibroblasts and murine SCID cells: high sensitivity to gamma rays and high frequency of methotrexate-induced DHFR gene amplification, but normal radiosensitivity to densely ionizing alpha particles. Radiat Environ Biophys. 1994;33:201–210.

    Article  CAS  PubMed  Google Scholar 

  44. Woloschak GE, Shearin JP, Chang LCM . Effects of ionizing radiation on expression of genes encoding cytoskeletal elements: kinetics and dose effects. Mol Carcinog. 1990;3:374–378.

    Article  CAS  PubMed  Google Scholar 

  45. Woloschak GE, Chang LC, Jones PS, Jones CA . Modulation of gene expression in Syrian hamster embryo cells following ionizing radiation. Cancer Res. 1990;50:339–344.

    CAS  PubMed  Google Scholar 

  46. Reedijk J, Lohman PH . Cisplatin: synthesis, antitumour activity and mechanism of action. Pharm Weekbl Sci. 1985;7:173–180.

    Article  CAS  PubMed  Google Scholar 

  47. Spitz DR, Phillips JW, Adams DT, Sherman CM, Deen DF, Li GC . Cellular resistance to oxidative stress is accompanied by resistance to cisplatin: the significance of increased catalase activity and total glutathione in hydrogen peroxide-resistant fibroblasts. J Cell Physiol. 1993;156:72–79.

    Article  CAS  PubMed  Google Scholar 

  48. Taatjes DJ, Fenick DJ, Gaudiano G, Koch TH . A redox pathway leading to the alkylation of nucleic acids by doxorubicin and related anthracyclines: application to the design of antitumor drugs for resistant cancer. Curr Pharm Des. 1998;4:203–218.

    CAS  PubMed  Google Scholar 

  49. Kharbanda S, Huberman E, Kufe D . Activation of the jun-D gene during treatment of human myeloid leukemia cells with 1-beta-D-arabinofuranosylcytosine. Biochem Pharmacol. 1993;45:2055–2061.

    Article  CAS  PubMed  Google Scholar 

  50. Sakamoto KM, Bardeleben C, Yates KE, Raines MA, Golde DW, Gasson JC . 5' upstream sequence and genomic structure of the human primary response gene, EGR-1/TIS8. Oncogene. 1991;6:867–871.

    CAS  PubMed  Google Scholar 

  51. Elion GB . The biochemistry and mechanism of action of acyclovir. J Antimicrob Chemother. 1983;12 (Suppl B):9–17.

    Article  CAS  PubMed  Google Scholar 

  52. Vincent-Salomon A, Rousseau A, Jouve M, et al. Proliferation markers predictive of the pathological response and disease outcome of patients with breast carcinomas treated by anthracycline-based preoperative chemotherapy. Eur J Cancer. 2004;40:1502–1508.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to Mr Abdalla Doleh and Mr Evano Piasentin for excellent technical support and to Dr Mark Yudelev for assistance in neutron irradiation. This work is supported by The Susan G Komen Breast Cancer Foundation, Wayne State University, Academic Radiation Oncologists and Radiation Oncology Research and Development Center, Detroit, MI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon D Scott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greco, O., Powell, T., Marples, B. et al. Gene therapy vectors containing CArG elements from the Egr1 gene are activated by neutron irradiation, cisplatin and doxorubicin. Cancer Gene Ther 12, 655–662 (2005). https://doi.org/10.1038/sj.cgt.7700834

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700834

Keywords

This article is cited by

Search

Quick links