Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Avian adenovirus vector CELO-TK displays anticancer activity in human cancer cells and suppresses established murine melanoma tumors

Abstract

Avian adenovirus CELO is a novel adenovirus vector system with the advantages of efficient production, high virion stability, and the absence of crossreactivity with Ad5-neutralizing antibodies. In this study, we evaluated the anticancer efficacy of a CELO vector encoding the herpes simplex virus type 1 thymidine kinase, a prodrug-activating therapeutic gene. Vectors carrying the gene for HSV-tk or EGFP under the control of the HCMV promoter in place of the “nonessential” region of the CELO genome were constructed. Anticancer activity of the CELO-TK vector was studied in vitro, in human and murine tumor cells in cell culture, and in vivo, in established subcutaneous murine B16 melanoma tumors in C57BL/6 mice. The CELO-TK vector mediated delivery of functional HSV-tk to tumor cell lines in cell culture. Comparison of the CELO-TK vector to a first-generation human adenovirus type 5 vector Ad5-TK in cultured H1299 cells showed equal levels of functional activity at increasing multiplicities of infection with CELO-based vector. CELO vectors allowed for transduction and expression of EGFP and HSV-tk genes in subcutaneous melanoma tumors in C57BL/6 mice. Intratumoral injections of CELO-TK followed by ganciclovir administration resulted in suppression of tumor growth and significantly increased the median of survival. The results of the study demonstrated the efficacy of CELO vector as a vehicle for the delivery of prodrug-activating genes such as HSV-tk to tumor cells in vitro and in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. McCormick F . Cancer gene therapy: fringe or cutting edge? Nat Rev Cancer. 2001;1:130–141.

    Article  CAS  PubMed  Google Scholar 

  2. Pearson S, Jia H, Kandachi K . China approves first gene therapy. Nat Biotechnol. 2004;22:3–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kay MA, Glorioso JC, Naldini L . Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med. 2001;7:33–40.

    Article  CAS  PubMed  Google Scholar 

  4. Kootstra NA, Verma IM . Gene therapy with viral vectors. Annu Rev Pharmacol Toxicol. 2003;43:413–439.

    Article  CAS  PubMed  Google Scholar 

  5. Both GW . Xenogeneic adenovirus vectors. In: Curiel DT, Douglas JT, eds. Adenoviral Vectors for Gene Therapy. New York, NY: Academic Press; 2001: 447–479.

    Google Scholar 

  6. Loser P, Huser A, Hillgenberg M, et al. Advances in the development of non-human viral DNA-vectors for gene delivery. Curr Gene Ther. 2002;2:161–171.

    Article  CAS  PubMed  Google Scholar 

  7. Michou AI, Lehrmann H, Saltik M, et al. Mutational analysis of the avian adenovirus CELO, which provides a basis for gene delivery vectors. J Virol. 1999;73:1399–1410.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Laver WG, Younghusband HB, Wrigley NG . Purification and properties of chick embryo lethal orphan virus (an avian adenovirus). Virology. 1971;45:598–614.

    Article  CAS  PubMed  Google Scholar 

  9. Logunov DY, Ilyinskaya GV, Cherenova LV, et al. Restoration of p53 tumor-suppressor activity in human tumor cells in vitro and in their xenografts in vivo by recombinant avian adenovirus CELO-p53. Gene Therapy. 2004;11:79–84.

    Article  CAS  PubMed  Google Scholar 

  10. Hyer RN, Howell MR, Ryan MA, et al. Cost-effectiveness analysis of reacquiring and using adenovirus types 4 and 7 vaccines in naval recruits. Am J Trop Med Hyg. 2000;62:613–618.

    Article  CAS  PubMed  Google Scholar 

  11. Cetron MS, Marfin AA, Julian KG, et al. Yellow fever vaccine. Recommendations of the Advisory Committee on Immunization Practices (ACIP), 2002. MMWR Recomm Rep. 2002;51:1–11.

    PubMed  Google Scholar 

  12. Harper SA, Fukuda K, Uyeki TM, et al. Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2004;53:1–40.

    PubMed  Google Scholar 

  13. Weiss RA . Adventitious viral genomes in vaccines but not in vaccinees. Emerg Infect Dis. 2001;7:153–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tree JA, Richardson C, Fooks AR, et al. Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus A vaccine strains. Vaccine. 2001;19:3444–3450.

    Article  CAS  PubMed  Google Scholar 

  15. Freeman SM, Abboud CN, Whartenby KA, et al. The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 1993;53:5274–5283.

    CAS  PubMed  Google Scholar 

  16. Cherenova LV, Logunov DY, Shashkova EV, et al. Recombinant avian adenovirus CELO expressing the human interleukin-2: characterization in vitro, in ovo and in vivo. Virus Res. 2004;100:257–261.

    Article  CAS  PubMed  Google Scholar 

  17. Doronin K, Toth K, Kuppuswamy M, et al. Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J Virol. 2000;74:6147–6155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mittereder N, March KL, Trapnell BC . Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J Virol. 1996;70:7498–7509.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Fallaux FJ, van der Eb AJ, Hoeben RC . Who's afraid of replication-competent adenoviruses? Gene Therapy. 1999;6: 709–712.

    Article  CAS  PubMed  Google Scholar 

  20. Lichtenstein DL, Toth K, Doronin K, et al. Functions and mechanisms of action of the adenovirus E3 proteins. Int Rev Immunol. 2004;23:75–111.

    Article  CAS  PubMed  Google Scholar 

  21. Washietl S, Eisenhaber F . Reannotation of the CELO genome characterizes a set of previously unassigned open reading frames and points to novel modes of host interaction in avian adenoviruses. BMC Bioinformatics. 2003;4:55.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shenk T . Adenoviridae: the viruses and their replication. In: Knipe DM, Howley PM, eds. Fields Virology. Philadelphia, PA: Lippincott, Williams & Wilkins; 2001: 2265–2300.

    Google Scholar 

  23. Davison AJ, Benko M, Harrach B . Genetic content and evolution of adenoviruses. J Gen Virol. 2003;84:2895–2908.

    Article  CAS  PubMed  Google Scholar 

  24. Chiocca S, Kurzbauer R, Schaffner G, et al. The complete DNA sequence and genomic organization of the avian adenovirus CELO. J Virol. 1996;70:2939–2949.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hess M, Cuzange A, Ruigrok RW, et al. The avian adenovirus penton: two fibres and one base. J Mol Biol. 1995;252:379–385.

    Article  CAS  PubMed  Google Scholar 

  26. Tan PK, Michou AI, Bergelson JM, et al. Defining CAR as a cellular receptor for the avian adenovirus CELO using a genetic analysis of the two viral fibre proteins. J Gen Virol. 2001;82:1465–1472.

    Article  CAS  PubMed  Google Scholar 

  27. Bett AJ, Krougliak V, Graham FL . DNA sequence of the deletion/insertion in early region 3 of Ad5 dl309. Virus Res. 1995;39:75–82.

    Article  CAS  PubMed  Google Scholar 

  28. Springer CJ, Niculescu-Duvaz I . Prodrug-activating systems in suicide gene therapy. J Clin Invest. 2000;105:1161–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rubsam LZ, Boucher PD, Murphy PJ, et al. Cytotoxicity and accumulation of ganciclovir triphosphate in bystander cells cocultured with herpes simplex virus type 1 thymidine kinase-expressing human glioblastoma cells. Cancer Res. 1999;59:669–675.

    CAS  PubMed  Google Scholar 

  30. Voskoglou-Nomikos T, Baral SD, Seymour LK . The role of in vitro cell line, human xenograft, and mouse allograft models in cancer drug development. In: Budman DR, Calvert AH, Rowinsky EK, eds. Handbook of Anticancer Drug Development. Baltimore, MD: Lippincott Williams & Wilkins; 2003: 129–147.

    Google Scholar 

  31. Peterson JK, Houghton PJ . Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur J Cancer. 2004;40:837–844.

    Article  CAS  PubMed  Google Scholar 

  32. Fillat C, Carrio M, Cascante A, et al. Suicide gene therapy mediated by the Herpes Simplex virus thymidine kinase gene/Ganciclovir system: fifteen years of application. Curr Gene Ther. 2003;3:13–26.

    Article  CAS  PubMed  Google Scholar 

  33. Pavlovic J, Nawrath M, Tu R, et al. Anti-tumor immunity is involved in the thymidine kinase-mediated killing of tumors induced by activated Ki-ras(G12V). Gene Therapy. 1996;3: 635–643.

    CAS  PubMed  Google Scholar 

  34. Ramesh R, Marrogi AJ, Munshi A, et al. In vivo analysis of the ‘bystander effect’: a cytokine cascade. Exp Hematol. 1996;24:829–838.

    CAS  PubMed  Google Scholar 

  35. Francois A, Eterradossi N, Delmas B, et al. Construction of avian adenovirus CELO recombinants in cosmids. J Virol. 2001;75:5288–5301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Glotzer JB, Saltik M, Chiocca S, et al. Activation of heat-shock response by an adenovirus is essential for virus replication. Nature. 2000;407:207–211.

    Article  CAS  PubMed  Google Scholar 

  37. Mesnil M, Piccoli C, Tiraby G, et al. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc Natl Acad Sci USA. 1996;93:1831–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lehrmann H, Cotten M . Characterization of CELO virus proteins that modulate the pRb/E2F pathway. J Virol. 1999;73:6517–6525.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kumin D, Hofmann C, Rudolph M, et al. Biology of ovine adenovirus infection of nonpermissive cells. J Virol. 2002;76: 10882–10893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Armentano D, Smith MP, Sookdeo CC, et al. E4ORF3 requirement for achieving long-term transgene expression from the cytomegalovirus promoter in adenovirus vectors. J Virol. 1999;73:7031–7034.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Grave L, Dreyer D, Dieterle A, et al. Differential influence of the E4 adenoviral genes on viral and cellular promoters. J Gene Med. 2000;2:433–443.

    Article  CAS  PubMed  Google Scholar 

  42. Krasnykh V, Dmitriev I, Navarro JG, et al. Advanced generation adenoviral vectors possess augmented gene transfer efficiency based upon coxsackie adenovirus receptor-independent cellular entry capacity. Cancer Res. 2000;60:6784–6787.

    CAS  PubMed  Google Scholar 

  43. Golumbek PT, Hamzeh FM, Jaffee EM, et al. Herpes simplex-1 virus thymidine kinase gene is unable to completely eliminate live, nonimmunogenic tumor cell vaccines. J Immunother. 1992;12:224–230.

    Article  CAS  PubMed  Google Scholar 

  44. Crittenden M, Gough M, Harrington K, et al. Expression of inflammatory chemokines combined with local tumor destruction enhances tumor regression and long-term immunity. Cancer Res. 2003;63:5505–5512.

    CAS  PubMed  Google Scholar 

  45. Nathanson L . Malignant melanoma. In: Foley JF, Vose JM, Armitage JO, eds. Current Therapy in Cancer. 2nd ed. Philadelphia, PA: W.B. Saunders Company; 1999: 245–254.

    Google Scholar 

  46. Boucher PD, Ostruszka LJ, Shewach DS . Synergistic enhancement of herpes simplex virus thymidine kinase/ganciclovir-mediated cytoxicity by hydroxyurea. Cancer Res. 2000;60:1631–1636.

    CAS  PubMed  Google Scholar 

  47. Wildner O, Blaese RM, Morris JC . Therapy of colon cancer with oncolytic adenovirus is enhanced by the addition of herpes simplex virus-thymidine kinase. Cancer Res. 1999;59: 410–413.

    CAS  PubMed  Google Scholar 

  48. Hermiston T . Gene delivery from replication-selective viruses: arming guided missiles in the war against cancer. J Clin Invest. 2000;105:1169–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nanda D, Vogels R, Havenga M, et al. Treatment of malignant gliomas with a replicating adenoviral vector expressing herpes simplex virus-thymidine kinase. Cancer Res. 2001;61:8743–8750.

    CAS  PubMed  Google Scholar 

  50. Freytag SO, Khil M, Stricker H, et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res. 2002;62:4968–4976.

    CAS  PubMed  Google Scholar 

  51. Wodarz D . Gene therapy for killing p53-negative cancer cells: use of replicating versus nonreplicating agents. Hum Gene Ther. 2003;14:153–159.

    Article  CAS  PubMed  Google Scholar 

  52. Lambright ES, Amin K, Wiewrodt R, et al. Inclusion of the herpes simplex thymidine kinase gene in a replicating adenovirus does not augment antitumor efficacy. Gene Therapy. 2001;8:946–953.

    Article  CAS  PubMed  Google Scholar 

  53. Sauthoff H, Hu J, Maca C, et al. Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors: virus persists and spreads systemically at late time points. Hum Gene Ther. 2003;14:425–433.

    Article  CAS  PubMed  Google Scholar 

  54. Wein LM, Wu JT, Kirn DH . Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: implications for virus design and delivery. Cancer Res. 2003;63:1317–1324.

    CAS  PubMed  Google Scholar 

  55. Sarma PS, Huebner RJ, Lane WT . Induction of tumors in hamsters with an avian adenovirus (CELO). Science. 1965;149:1108.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Frank Graham, Valeri Krougliak, Matthew Cotten, Galina Deichman, and Maxim Shmarov for cell lines and reagents. We are thankful to Boris Naroditsky, Valeri Krougliak, Dmitry Shayakhmetov, and Alexander Zakhartchouk for helpful discussions, and to Denis Logunov for technical assistance. We are grateful to Drew L Lichtenstein for critical reading of the manuscript. The work was supported by grants 01-04-48454 from the Russian Foundation for Basic Research and CA105841 from the National Institutes of Health to KD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Doronin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shashkova, E., Cherenova, L., Kazansky, D. et al. Avian adenovirus vector CELO-TK displays anticancer activity in human cancer cells and suppresses established murine melanoma tumors. Cancer Gene Ther 12, 617–626 (2005). https://doi.org/10.1038/sj.cgt.7700822

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700822

Keywords

This article is cited by

Search

Quick links