Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Efficient transfer of PSA and PSMA cDNAs into DCs generates antibody and T cell antitumor responses in vivo

Abstract

Gene therapy for prostate cancer may be realized through transduction of whole genes, such as PSA or PSMA, into immunotherapeutic dendritic cells (DCs). An oncoretroviral vector encoding human PSMA and a bicistronic oncoretroviral vector encoding human PSA and cell surface CD25 cDNAs were constructed. Remarkably, transfer of PSA/CD25 or PSMA cDNA during murine hematopoietic cell differentiation into DCs occurred with approximately 80% efficiency. In vitro, transduced DCs retained allostimulatory function and primed syngeneic T cells for tumor antigen-specific IFN-γ secretion. In test experiments designed to elucidate mechanisms in vivo, syngeneic recipients of transduced DCs had increased anti-human PSA antibody titers and tumor-specific CD8+ T cell IFN-γ secretion with no detectable immune response to CD25. Gene-modified DC recipients had increased protection from specific tumor challenge for at least 18 weeks post-vaccination. DC vaccination also protected both male and female recipients. Gene-modified DC vaccination mediated regression of established, specific gene-expressing, TRAMP-C1 prostate cancer cell tumors. These findings indicate that antibody and cellular responses generated through PSA and PSMA gene transfer into DC yielded protective immunity, thereby providing further preclinical support for the implementation of immuno-gene therapy approaches for prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2
Figure 1
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Vesalainen S, Lipponen P, Talja M, Syrjanen K . Histological grade, perineural infiltration, tumour-infiltrating lymphocytes and apoptosis as determinants of long-term prognosis in prostatic adenocarcinoma. Eur J Cancer. 1994;30A:1797–1803.

    Article  CAS  PubMed  Google Scholar 

  2. Wei C, Storozynsky E, McAdam AJ, et al. Expression of human prostate-specific antigen (PSA) in a mouse tumor cell line reduces tumorigenicity and elicits PSA-specific cytotoxic T lymphocytes. Cancer Immunol Immunother. 1996;42:362–368.

    Article  CAS  PubMed  Google Scholar 

  3. Liu KJ, Chatta GS, Twardzik DR, et al. Identification of rat prostatic steroid-binding protein as a target antigen of experimental auto-immune prostatitis: implications for prostate cancer therapy. J Immunol. 1997;159:472–480.

    CAS  PubMed  Google Scholar 

  4. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature. 1998;392:245–252.

    Article  CAS  PubMed  Google Scholar 

  5. Steinman RM . The dendritic cell system and its role in immunogenicity. Ann Rev Immunol. 1991;9:271–296.

    Article  CAS  Google Scholar 

  6. Aalamian M, Pirtskhalaishvili G, Nunez A, et al. Human prostate cancer regulates generation and maturation of monocyte-derived dendritic cells. Prostate. 2001;46:68–75.

    Article  CAS  PubMed  Google Scholar 

  7. Pirtskhalaishvili G, Shurin GV, Gambotto A, et al. Transduction of dendritic cells with Bcl-xL increases their resistance to prostate cancer-induced apoptosis and antitumor effect in mice. J Immunol. 2000;165:1956–1964.

    Article  CAS  PubMed  Google Scholar 

  8. Troy A, Davidson P, Atkinson C, Hart D . Phenotypic characterisation of the dendritic cell infiltrate in prostate cancer. J Urol. 1998;160:214–219.

    Article  CAS  PubMed  Google Scholar 

  9. Takenaka T, Murray GJ, Qin G, et al. Long-term enzyme correction and lipid reduction in multiple organs of primary and secondary transplanted Fabry mice receiving transduced bone marrow cells. Proc Natl Acad Sci USA. 2000;97:7515–7520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qin G, Takenaka T, Telsh K, et al. Pre-selective gene therapy for Fabry disease. Proc Natl Acad Sci USA. 2001;98:3428–3433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Henderson RA, Nimgoankar MT, Watkins SC, et al. Human dendritic cells genetically engineered to express high levels of the human epithelial tumor antigen mucin (MUC-1). Cancer Res. 1996;56:3763–3770.

    CAS  PubMed  Google Scholar 

  12. Reeves ME, Royal RE, Lam JS, et al. Retroviral transduction of human dendritic cells with a tumor-associated antigen gene. Cancer Res. 1996;56:5672–5677.

    CAS  PubMed  Google Scholar 

  13. Song ES, Lee V, Surh CD, et al. Antigen presentation in retroviral vector-mediated gene transfer in vivo. Proc Natl Acad Sci USA. 1997;94:1943–1948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Specht JM, Wang G, Do MT, et al. Dendritic cells retrovirally transduced with a model antigen gene are therapeutically effective against established pulmonary metastases. J Exp Med. 1997;186:1213–1221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parajuli P, Mosley RL, Pisarev V, et al. Flt3 ligand and granulocyte-macrophage colony-stimulating factor preferentially expand and stimulate different dendritic and T cell subsets. Exp Hematol. 2001;29:1185–1193.

    Article  CAS  PubMed  Google Scholar 

  16. Ward AM, Catto JWF, Hamdy FC . Prostate specific antigen: biology, biochemistry and available commercial assays. Ann Clin Biochem. 2001;38:633–651.

    Article  CAS  PubMed  Google Scholar 

  17. Xue BH, Zhang Y, Sosman JA, Peace DJ . Induction of human cytotoxic T lymphocytes specific for prostate-specific antigen. Prostate. 1997;30:73–78.

    Article  CAS  PubMed  Google Scholar 

  18. Kim JJ, Trivedi NN, Wilson DM, et al. Molecular and immunological analysis of genetic prostate specific antigen (PSA) vaccine. Oncogene. 1998;17:3125–3135.

    Article  CAS  PubMed  Google Scholar 

  19. Heiser A, Maurice MA, Yancey DR, et al. Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA. J Immunol. 2001;166:2953–2960.

    Article  CAS  PubMed  Google Scholar 

  20. Gregorakis AK, Holmes EH, Murphy GP . Prostate-specific membrane antigen: current and future utility. Sem Urol Oncol. 1998;16:2–12.

    CAS  Google Scholar 

  21. Tasch J, Gong M, Sadelain M, Heston WDW . A unique folate hydrolase, prostate-specific membrane antigen (PSMA): a target for immunotherapy? Crit Rev Immunol. 2001;21:249–261.

    Article  CAS  PubMed  Google Scholar 

  22. Kim J, Palmer, JL, Finn L, et al. The pattern of serum markers in androgen-independent adenocarcinoma of the prostate. Urologic Oncol. 2000;5:97–103.

    Article  CAS  Google Scholar 

  23. Chang SS, Reuter VE, Heston WD, et al. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 1999;59:3192–3198.

    CAS  PubMed  Google Scholar 

  24. Mincheff M, Tchakarov S, Zoubak S, et al. Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a phase I/II clinical trial. Eur Urol. 2000;38:208–217.

    Article  CAS  PubMed  Google Scholar 

  25. Henttu P, Vihko P . cDNA coding for the entire human prostate specific antigen shows high homologies to the human tissue kallikrein genes. Biochem Biophys Res Commun. 1989;160:903–910.

    Article  CAS  PubMed  Google Scholar 

  26. Takenaka T, Qin G, Brady RO, Medin JA . Circulating α-galactosidase A derived from transduced bone marrow cells: relevance to gene therapy for Fabry disease. Hum Gene Ther. 1999;10:1931–1939.

    Article  CAS  PubMed  Google Scholar 

  27. Gehring U, Mohit B, Tomkins GM . Glucocorticoid action on hybrid clones derived from cultured myeloma and lymphoma cell lines. Proc Natl Acad Sci USA. 1972;69:3124–3127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Foster BA, Gingrich JR, Kwon ED, et al. Characterization of prostatic epithelial cell lines derived from transgenic adenocarconoma of the mouse prostate (TRAMP) model. Cancer Res. 1997;57:3325–3330.

    CAS  PubMed  Google Scholar 

  29. Garlie NK, Lefever AV, Siebenlist RE, et al. T cells co-activated with immobilized anti-CD3 and anti-CD28 as potential immunotherapy for cancer. J Immunother. 1999;22:336–345.

    Article  CAS  PubMed  Google Scholar 

  30. Olsson AY, Lundwall A . Organization and evolution of the glandular kallikrein locus in Mus musculus. Biochem Biophys Res Comm. 2002;299:305–311.

    Article  PubMed  Google Scholar 

  31. Lapointe R, Royal RE, Reeves ME, et al. Retrovirally transduced human dendritic cells can generate T cells recognizing multiple MHC Class I and Class II epitopes from the melanoma antigen glycoprotein 100. J Immunol. 2001;167:4758–4764.

    Article  CAS  PubMed  Google Scholar 

  32. Fan L, Owen JS, and Dickson, G . Construction and characterization of polycistronic retrovirus vectors for sustained and high-level co-expression of apolipoprotein A-I and lecithin-cholesterol acyltransferase. Atherosclerosis. 1999;147:139–145.

    Article  CAS  PubMed  Google Scholar 

  33. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells. Nat Med. 1998;4:328–332.

    Article  CAS  PubMed  Google Scholar 

  34. Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med. 1996;2:52–58.

    Article  CAS  PubMed  Google Scholar 

  35. Tjoa BA, Simmons SJ, Elgamal A, et al. Follow-up evaluation of a phase II prostate cancer vaccine trial. Prostate. 1999;40:125–129.

    Article  CAS  PubMed  Google Scholar 

  36. Huang YM, Yang JS, Xu LY, et al. Autoantigen-pulsed dendritic cells induce tolerance to experimental allergic encephalomyelitis (EAE) in Lewis rats. Clin Exp Immunol. 2000;122:437–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nouri-Shirazi M, Banchereau J, Bell D, et al. Dendritic cells capture killed tumor cells and present their antigens to elicit tumor-specific immune responses. J Immunol. 2000;165:3797–3803.

    Article  CAS  PubMed  Google Scholar 

  38. Medin JA, Karlsson S . Viral vectors for gene therapy of hematopoietic cells. Immunotech. 1997;3:3–19.

    Article  CAS  Google Scholar 

  39. Jonuleit H, Tuting T, Steitz J, et al. Efficient transduction of mature CD83+ dendritic cells using recombinant adenovirus suppressed T cell stimulatory capacity. Gene Ther. 2000;7:249–254.

    Article  CAS  PubMed  Google Scholar 

  40. Dyall J, Latouche JB, Schnell S, Sadelain M . Lentivirus-transduced human monocyte-derived dendritic cells efficiently stimulate antigen-specific cytotoxic T lymphocytes. Blood. 2001;97:114–121.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Christopher Siatskas (OCI, UHN) for helpful discussions and critical reading of the manuscript along with JingMei Liu (UIC), Gangjian Qin (UIC), and John Campbell (OCI, UHN) for experimental assistance. This study was supported in part by the US Department of Defense Grant #DAMD17-00-1-0083 (to JAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A Medin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medin, J., Liang, SB., Hou, JS. et al. Efficient transfer of PSA and PSMA cDNAs into DCs generates antibody and T cell antitumor responses in vivo. Cancer Gene Ther 12, 540–551 (2005). https://doi.org/10.1038/sj.cgt.7700810

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700810

Keywords

This article is cited by

Search

Quick links