Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cotargeting tumor and tumor endothelium effectively inhibits the growth of human prostate cancer in adenovirus-mediated antiangiogenesis and oncolysis combination therapy

Abstract

Tumor–endothelial interaction contributes to local prostate tumor growth and distant metastasis. In this communication, we designed a novel approach to target both cancer cells and their “crosstalk” with surrounding microvascular endothelium in an experimental hormone refractory human prostate cancer model. We evaluated the in vitro and in vivo synergistic and/or additive effects of a combination of conditional oncolytic adenovirus plus an adenoviral-mediated antiangiogenic therapy. In the in vitro study, we demonstrated that human umbilical vein endothelial cells (HUVEC) and human C4-2 androgen-independent (AI) prostate cancer cells, when infected with an antiangiogenic adenoviral (Ad)-Flk1-Fc vector secreting a soluble form of Flk1, showed dramatically inhibited proliferation, migration and tubular formation of HUVEC endothelial cells. C4-2 cells showed maximal growth inhibition when coinfected with Ad-Flk1-Fc and Ad-hOC-E1, a conditional replication-competent Ad vector with viral replication driven by a human osteocalcin (hOC) promoter targeting both prostate cancer epithelial and stromal cells. Using a three-dimensional (3D) coculture model, we found that targeting C4-2 cells with Ad-hOC-E1 markedly decreased tubular formation in HUVEC, as visualized by confocal microscopy. In a subcutaneous C4-2 tumor xenograft model, tumor volume was decreased by 40–60% in animals treated with Ad-Flk1-Fc or Ad-hOC-E1 plus vitamin D3 alone and by 90% in a combined treatment group, compared to untreated animals in an 8-week treatment period. Moreover, three of 10 (30%) pre-established tumors completely regressed when animals received combination therapy. Cotargeting tumor and tumor endothelium could be a promising gene therapy strategy for the treatment of both localized and metastatic human prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Landis SH, Murray T, Bolden S, Wingo PA . Cancer statistics, 1999. CA Cancer J Clin. 1999;49:8–31.

    Article  CAS  PubMed  Google Scholar 

  2. Koeneman KS, Yeung F, Chung LW . Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate. 1999;39:246–261.

    Article  CAS  PubMed  Google Scholar 

  3. Jacobs SC . Spread of prostatic cancer to bone. Urology. 1983;21:337–344.

    Article  CAS  PubMed  Google Scholar 

  4. Pollen JJ, Gerber K, Ashburn WL, Schmidt JD . Nuclear bone imaging in metastatic cancer of the prostate. Cancer. 1981;47:2585–2594.

    Article  CAS  PubMed  Google Scholar 

  5. Tu SM, Millikan RE, Mengistu B, et al. Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomised phase II trial. Lancet. 2001;357:336–341.

    Article  CAS  PubMed  Google Scholar 

  6. Sung SY, Chung LW . Prostate tumor-stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation. 2002;70:506–521.

    Article  CAS  PubMed  Google Scholar 

  7. Hsieh CL, Gardner TA, Miao L, Balian G, Chung LW . Cotargeting tumor and stroma in a novel chimeric tumor model involving the growth of both human prostate cancer and bone stromal cells. Cancer Gene Ther. 2004;11:148–155.

    Article  CAS  PubMed  Google Scholar 

  8. Matsubara S, Wada Y, Gardner TA, et al. A conditional replication-competent adenoviral vector, Ad-OC-E1a, to cotarget prostate cancer and bone stroma in an experimental model of androgen-independent prostate cancer bone metastasis. Cancer Res. 2001;61:6012–6019.

    CAS  PubMed  Google Scholar 

  9. Folkman J . What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990;82:4–6.

    Article  CAS  PubMed  Google Scholar 

  10. Arap W, Pasqualini R, Ruoslahti E . Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998;279:377–380.

    Article  CAS  PubMed  Google Scholar 

  11. Cao R, Wu HL, Veitonmaki N, et al. Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc Natl Acad Sci USA. 1999;96:5728–5733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sacco MG, Cato EM, Ceruti R, et al. Systemic gene therapy with anti-angiogenic factors inhibits spontaneous breast tumor growth and metastasis in MMTVneu transgenic mice. Gene Therapy. 2001;8:67–70.

    Article  CAS  PubMed  Google Scholar 

  13. Folkman J . Angiogenesis and angiogenesis inhibition: an overview. Exs. 1997;79:1–8.

    CAS  PubMed  Google Scholar 

  14. Fidler IJ, Ellis LM . The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell. 1994;79:185–188.

    Article  CAS  PubMed  Google Scholar 

  15. Ranieri G, Gasparini G . Angiogenesis and angiogenesis inhibitors: a new potential anticancer therapeutic strategy. Curr Drug Targets Immune Endocr Metabol Disord. 2001;1:241–253.

    Article  CAS  PubMed  Google Scholar 

  16. Niethammer AG, Xiang R, Becker JC, et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med. 2002;8:1369–1375.

    Article  CAS  PubMed  Google Scholar 

  17. Li L, Wartchow CA, Danthi SN, et al. A novel antiangiogenesis therapy using an integrin antagonist or anti-Flk-1 antibody coated 90Y-labeled nanoparticles. Int J Radiat Oncol Biol Phys. 2004;58:1215–1227.

    Article  CAS  PubMed  Google Scholar 

  18. Lin P, Sankar S, Shan S, et al. Inhibition of tumor growth by targeting tumor endothelium using a soluble vascular endothelial growth factor receptor. Cell Growth Differ. 1998;9:49–58.

    CAS  PubMed  Google Scholar 

  19. Shepherd FA . Angiogenesis inhibitors in the treatment of lung cancer. Lung Cancer. 2001;34(Suppl 3):S81–S89.

    Article  PubMed  Google Scholar 

  20. Wu HC, Hsieh JT, Gleave ME, Brown NM, Pathak S, Chung LW . Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int J Cancer. 1994;57:406–412.

    Article  CAS  PubMed  Google Scholar 

  21. Kuo CJ, Farnebo F, Yu EY, et al. Comparative evaluation of the antitumor activity of antiangiogenic proteins delivered by gene transfer. Proc Natl Acad Sci USA. 2001;98:4605–4610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hsieh CL, Yang L, Miao L, et al. A novel targeting modality to enhance adenoviral replication by vitamin D(3) in androgen-independent human prostate cancer cells and tumors. Cancer Res. 2002;62:3084–3092.

    CAS  PubMed  Google Scholar 

  23. Graham FL, Prevec L . Methods for construction of adenovirus vectors. Mol Biotechnol. 1995;3:207–220.

    Article  CAS  PubMed  Google Scholar 

  24. Schmitz V, Wang L, Barajas M, Peng D, Prieto J, Qian C . A novel strategy for the generation of angiostatic kringle regions from a precursor derived from plasminogen. Gene Therapy. 2002;9:1600–1606.

    Article  CAS  PubMed  Google Scholar 

  25. Schleef RR, Birdwell CR . The effect of fibrin on endothelial cell migration in vitro. Tissue Cell. 1982;14:629–636.

    Article  CAS  PubMed  Google Scholar 

  26. Carson SD, Hobbs JT, Tracy SM, Chapman NM . Expression of the coxsackievirus and adenovirus receptor in cultured human umbilical vein endothelial cells: regulation in response to cell density. J Virol. 1999;73:7077–7079.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jackson MW, Roberts JS, Heckford SE, et al. A potential autocrine role for vascular endothelial growth factor in prostate cancer. Cancer Res. 2002;62:854–859.

    CAS  PubMed  Google Scholar 

  28. Bostwick DG, Iczkowski KA . Microvessel density in prostate cancer: prognostic and therapeutic utility. Semin Urol Oncol. 1998;16:118–123.

    CAS  PubMed  Google Scholar 

  29. Jones A, Fujiyama C . Angiogenesis in urological malignancy: prognostic indicator and therapeutic target. Br J Urol Int. 1999;83:535–555 quiz 555-536.

    Article  CAS  Google Scholar 

  30. Lissbrant IF, Lissbrant E, Damber JE, Bergh A . Blood vessels are regulators of growth, diagnostic markers and therapeutic targets in prostate cancer. Scand J Urol Nephrol. 2001;35:437–452.

    Article  CAS  PubMed  Google Scholar 

  31. Yu JL, Rak JW, Coomber BL, Hicklin DJ, Kerbel RS . Effect of p53 status on tumor response to antiangiogenic therapy. Science. 2002;295:1526–1528.

    Article  CAS  PubMed  Google Scholar 

  32. Retter AS, Figg WD, Dahut WL . The combination of antiangiogenic and cytotoxic agents in the treatment of prostate cancer. Clin Prostate Cancer. 2003;2:153–159.

    Article  CAS  PubMed  Google Scholar 

  33. Becker CM, Farnebo FA, Iordanescu I, et al. Gene therapy of prostate cancer with the soluble vascular endothelial growth factor receptor Flk1. Cancer Biol Ther. 2002;1:548–553.

    Article  PubMed  Google Scholar 

  34. Rak J, Filmus J, Kerbel RS . Reciprocal paracrine interactions between tumour cells and endothelial cells: the ‘angiogenesis progression’ hypothesis. Eur J Cancer. 1996;32A:2438–2450.

    Article  CAS  PubMed  Google Scholar 

  35. Getzenberg RH, Light BW, Lapco PE, et al. Vitamin D inhibition of prostate adenocarcinoma growth and metastasis in the Dunning rat prostate model system. Urology. 1997;50:999–1006.

    Article  CAS  PubMed  Google Scholar 

  36. Majewski S, Szmurlo A, Marczak M, Jablonska S, Bollag W . Inhibition of tumor cell-induced angiogenesis by retinoids, 1,25-dihydroxyvitamin D3 and their combination. Cancer Lett. 1993;75:35–39.

    Article  CAS  PubMed  Google Scholar 

  37. Fujioka T, Hasegawa M, Ishikura K, Matsushita Y, Sato M, Tanji S . Inhibition of tumor growth and angiogenesis by vitamin D3 agents in murine renal cell carcinoma. J Urol. 1998;160:247–251.

    Article  CAS  PubMed  Google Scholar 

  38. Shokravi MT, Marcus DM, Alroy J, Egan K, Saornil MA, Albert DM . Vitamin D inhibits angiogenesis in transgenic murine retinoblastoma. Invest Ophthalmol Vis Sci. 1995;36:83–87.

    CAS  PubMed  Google Scholar 

  39. Tseng JF, Farnebo FA, Kisker O, et al. Adenovirus-mediated delivery of a soluble form of the VEGF receptor Flk1 delays the growth of murine and human pancreatic adenocarcinoma in mice. Surgery. 2002;132:857–865.

    Article  PubMed  Google Scholar 

  40. Han JS, Qian D, Wicha MS, Clarke MF . A method of limited replication for the efficient in vivo delivery of adenovirus to cancer cells. Hum Gene Ther. 1998;9:1209–1216.

    Article  CAS  PubMed  Google Scholar 

  41. Haviv YS, Takayama K, Glasgow JN, et al. A model system for the design of armed replicating adenoviruses using p53 as a candidate transgene. Mol Cancer Ther. 2002;1:321–328.

    CAS  PubMed  Google Scholar 

  42. Chen CT, Lin J, Li Q, et al. Antiangiogenic gene therapy for cancer via systemic administration of adenoviral vectors expressing secretable endostatin. Hum Gene Ther. 2000;11:1983–1996.

    Article  CAS  PubMed  Google Scholar 

  43. Mahasreshti PJ, Kataram M, Wang MH, et al. Intravenous delivery of adenovirus-mediated soluble FLT-1 results in liver toxicity. Clin Cancer Res. 2003;9:2701–2710.

    CAS  PubMed  Google Scholar 

  44. Kesterson RA, Stanley L, DeMayo F, Finegold M, Pike JW . The human osteocalcin promoter directs bone-specific vitamin D-regulatable gene expression in transgenic mice. Mol Endocrinol. 1993;7:462–467.

    CAS  PubMed  Google Scholar 

  45. Clemens TL, Tang H, Maeda S, et al. Analysis of osteocalcin expression in transgenic mice reveals a species difference in vitamin D regulation of mouse and human osteocalcin genes. J Bone Miner Res. 1997;12:1570–1576.

    Article  CAS  PubMed  Google Scholar 

  46. Kubo H, Gardner TA, Wada Y, et al. Phase I dose escalation clinical trial of adenovirus vector carrying osteocalcin promoter-driven herpes simplex virus thymidine kinase in localized and metastatic hormone-refractory prostate cancer. Hum Gene Ther. 2003;14:227–241.

    Article  CAS  PubMed  Google Scholar 

  47. Hisatake J, Kubota T, Hisatake Y, Uskokovic M, Tomoyasu S, Koeffler HP . 5,6-trans-16-ene-vitamin D3: a new class of potent inhibitors of proliferation of prostate, breast, and myeloid leukemic cells. Cancer Res. 1999;59:4023–4029.

    CAS  PubMed  Google Scholar 

  48. Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 1999;155:739–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hendrix MJ, Seftor EA, Kirschmann DA, Seftor RE . Molecular biology of breast cancer metastasis. Molecular expression of vascular markers by aggressive breast cancer cells. Breast Cancer Res. 2000;2:417–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sharma N, Seftor RE, Seftor EA, et al. Prostatic tumor cell plasticity involves cooperative interactions of distinct phenotypic subpopulations: role in vasculogenic mimicry. Prostate. 2002;50:189–201.

    Article  PubMed  Google Scholar 

  51. Sood AK, Fletcher MS, Hendrix MJ . The embryonic-like properties of aggressive human tumor cells. J Soc Gynecol Investig. 2002;9:2–9.

    Article  PubMed  Google Scholar 

  52. Breast Cancer Progression Working Party. Evidence for novel non-angiogenic pathway in breast-cancer metastasis. Lancet. 2000;355:1787–1788.

  53. Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn LL . Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA. 2000;97:14608–14613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Mr Gary Mawyer for editorial assistance. This work was supported in part by DOD Grant DAMD17-03-1-0160 to C-LH, NIH 1 R01 CA95654-01 to CJK, DAMD17-00-1-0526 and NIH 1PO1CA098912-01 to LWKC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Ling Hsieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, F., Xie, Z., Kuo, C. et al. Cotargeting tumor and tumor endothelium effectively inhibits the growth of human prostate cancer in adenovirus-mediated antiangiogenesis and oncolysis combination therapy. Cancer Gene Ther 12, 257–267 (2005). https://doi.org/10.1038/sj.cgt.7700790

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700790

Keywords

This article is cited by

Search

Quick links