Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suppression of peritoneal implantation of gastric cancer cells by adenovirus vector-mediated NK4 expression

Abstract

Peritoneal dissemination is the most common mode of metastasis in gastric cancer. We previously reported the importance of milky spots (MS), peritoneal lymphoid tissues, as selective sites of cancer implantation in peritoneal dissemination. In the present study, we first demonstrated that intraperitoneal injection of adenovirus vector encoding the GFP gene into tumor-free nude mice resulted in GFP expression at omental and mesenteric MS; MS macrophages were target cells for adenovirus infection. We confirmed that intraperitoneal injection of adenovirus vector encoding the NK4 gene (AdNK4) resulted in NK4 production localized to the peritoneal cavity, especially the omentum. Adenovirus vector-mediated MS-selective transgene expression was markedly impaired in tumor-bearing mice whose MS had already been replaced by infiltrating cancer cells. However, prior injection of AdNK4 successfully inhibited MS-selective cancer cell implantation, resulting in suppression of peritoneal dissemination and prolongation of survival. Adenovirus vector-mediated MS-selective delivery of a therapeutic gene may prevent peritoneal dissemination of gastric cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Averbach AM, Jacquet P . Strategies to decrease the incidence of intra-abdominal recurrence in resectable gastric cancer. Br J Surg. 1996;83:726–733.

    Article  CAS  PubMed  Google Scholar 

  2. Moriguchi S, Maehara Y, Korenaga D, et al. Risk factors which predict pattern of recurrence after curative surgery for patients with advanced gastric cancer. Surg Oncol. 1992;1:341–346.

    Article  CAS  PubMed  Google Scholar 

  3. Boku T, Nakane Y, Minoura T, et al. Prognostic significance of serosal invasion and free intraperitoneal cancer cells in gastric cancer. Br J Surg. 1990;77:436–439.

    Article  CAS  PubMed  Google Scholar 

  4. Sautner T, Hofbauer F, Depisch D, et al. Adjuvant intraperitoneal cisplatin chemotherapy does not improve long-term survival after surgery for advanced gastric cancer. J Clin Oncol. 1994;12:970–974.

    Article  CAS  PubMed  Google Scholar 

  5. Shimotsuma M, Shields JW, Simpson-Morgan MW, et al. Morpho-physiological function and role of omental milky spots as omentum-associated lymphoid tissue (OALT) in the peritoneal cavity. Lymphology. 1993;26:90–101.

    CAS  PubMed  Google Scholar 

  6. Shimotsuma M, Simpson-Morgan MW, Takahashi T, et al. Activation of omental milky spots and milky spot macrophages by intraperitoneal administration of a streptococcal preparation, OK-432. Cancer Res. 1992;52:5400–5402.

    CAS  PubMed  Google Scholar 

  7. Dux K . Role of the greater omentum in the immunological response of mice and rats to the intraperitoneal inoculation of Ehrlich ascites tumor. Arch Immunol Ther Exp. 1969;17:425–432.

    CAS  Google Scholar 

  8. Green JA, Williams AE . The relationship between inflammatory responses and WBP1 tumour cell attachment to the rat omentum. Eur J Cancer. 1978;14:1153–1155.

    Article  CAS  PubMed  Google Scholar 

  9. Hagiwara A, Takahashi T, Sawai K, et al. Milky spots as the implantation site for malignant cells in peritoneal dissemination in mice. Cancer Res. 1993;53:687–692.

    CAS  PubMed  Google Scholar 

  10. Tsujimoto H, Takahashi T, Hagiwara A, et al. Site-specific implantation in the milky spots of malignant cells in peritoneal dissemination: immunohistochemical observation in mice inoculated intraperitoneally with bromodeoxyuridine-labelled cells. Br J Cancer. 1995;71:468–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hagiwara A, Takahashi T, Kojima O, et al. Prophylaxis with carbon-adsorbed mitomycin against peritoneal recurrence of gastric cancer. Lancet. 1992;339:629–631.

    Article  CAS  PubMed  Google Scholar 

  12. Rosen HR, Jatzko G, Repse S, et al. Adjuvant intraperitoneal chemotherapy with carbon-adsorbed mitomycin in patients with gastric cancer: results of a randomized multicenter trial of the Austrian Working Group for Surgical Oncology. J Clin Oncol. 1998;16:2733–2738.

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura T, Matsumoto K, Kiritoshi A, et al. Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor–stromal interactions. Cancer Res. 1997;57:3305–3313.

    CAS  PubMed  Google Scholar 

  14. Seslar SP, Nakamura T, Byers SW . Regulation of fibroblast hepatocyte growth factor/scatter factor expression by human breast carcinoma cell lines and peptide growth factors. Cancer Res. 1993;53:1233–1238.

    CAS  PubMed  Google Scholar 

  15. Kuniyasu H, Yasui W, Kitadai Y, et al. Frequent amplification of the c-Met gene in scirrhous type stomach cancer. Biochem Biophys Res Commun. 1992;189:227–232.

    Article  CAS  PubMed  Google Scholar 

  16. Kaji M, Yonemura Y, Harada S, et al. Participation of c-Met in the progression of human gastric cancers: anti-c-met oligonucleotides inhibit proliferation or invasiveness of gastric cancer cells. Cancer Gene Ther. 1996;3:393–404.

    CAS  PubMed  Google Scholar 

  17. Inoue T, Chung YS, Yashiro M, et al. Transforming growth factor-beta and hepatocyte growth factor produced by gastric fibroblasts stimulate the invasiveness of scirrhous gastric cancer cells. Jpn J Cancer Res. 1997;88:152–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yashiro M, Chung YS, Inoue T, et al. Hepatocyte growth factor (HGF) produced by peritoneal fibroblasts may affect mesothelial cell morphology and promote peritoneal dissemination. Int J Cancer. 1996;67:289–293.

    Article  CAS  PubMed  Google Scholar 

  19. Date K, Matsumoto K, Shimura H, et al. HGF/NK4 is a specific antagonist for pleiotrophic actions of hepatocyte growth factor. FEBS Lett. 1997;420:1–6.

    Article  CAS  PubMed  Google Scholar 

  20. Date K, Matsumoto K, Kuba K, et al. Inhibition of tumor growth and invasion by a four-kringle antagonist (HGF/NK4) for hepatocyte growth factor. Oncogene. 1998;17:3045–3054.

    Article  CAS  PubMed  Google Scholar 

  21. Kuba K, Matsumoto K, Date K, et al. HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res. 2000;60:6737–6743.

    CAS  PubMed  Google Scholar 

  22. Tomioka D, Maehara N, Kuba K, et al. Inhibition of growth, invasion, and metastasis of human pancreatic carcinoma cells by NK4 in an orthotopic mouse model. Cancer Res. 2001;61:7518–7524.

    CAS  PubMed  Google Scholar 

  23. Saimura M, Nagai E, Mizumoto K, et al. Tumor suppression through angiogenesis inhibition by SUIT-2 pancreatic cancer cells genetically engineered to secrete NK4. Clin Cancer Res. 2002;8:3243–3249.

    CAS  PubMed  Google Scholar 

  24. Saimura M, Nagai E, Mizumoto K, et al. Intraperitoneal injection of adenovirus-mediated NK4 gene suppresses peritoneal dissemination of pancreatic cancer cell line AsPC-1 in nude mice. Cancer Gene Ther. 2002;9:799–806.

    Article  CAS  PubMed  Google Scholar 

  25. Maehara N, Nagai E, Mizumoto K, et al. Gene transduction of NK4, HGF antagonist, inhibits in vitro invasion and in vivo growth of human pancreatic cancer. Clin Exp Metastasis. 2002;19:417–426.

    Article  CAS  PubMed  Google Scholar 

  26. Saga Y, Mizukami H, Suzuki M, et al. Expression of HGF/NK4 in ovarian cancer cells suppresses intraperitoneal dissemination and extends host survival. Gene Therapy. 2001;8:1450–1455.

    Article  CAS  PubMed  Google Scholar 

  27. Maemondo M, Narumi K, Saijo Y, et al. Targeting angiogenesis and HGF function using an adenoviral vector expressing the HGF antagonist NK4 for cancer therapy. Mol Ther. 2002;5:177–185.

    Article  CAS  PubMed  Google Scholar 

  28. Hirao S, Yamada Y, Koyama F, et al. Tumor suppression effect using NK4, a molecule acting as an antagonist of HGF, on human gastric carcinomas. Cancer Gene Ther. 2002;9:700–707.

    Article  CAS  PubMed  Google Scholar 

  29. Heideman DA, van Beusechem VW, Bloemena E, et al. Suppression of tumor growth, invasion and angiogenesis of human gastric cancer by adenovirus-mediated expression of NK4. J Gene Med. 2004;6:317–327.

    Article  CAS  PubMed  Google Scholar 

  30. Kozarsky KF, Wilson JM . Gene therapy: adenovirus vectors. Curr Opin Genet Dev. 1993;3:499–503.

    Article  CAS  PubMed  Google Scholar 

  31. Hampl M, Tanaka T, Albert PS, et al. Therapeutic effects of viral vector-mediated antiangiogenic gene transfer in malignant ascites. Hum Gene Ther. 2001;12:1713–1729.

    Article  CAS  PubMed  Google Scholar 

  32. Herz J, Gerard RD . Adenovirus-mediated transfer of low-density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice. Proc Natl Acad Sci USA. 1993;90:2812–2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Morsy MA, Alford EL, Bett A, et al. Efficient adenoviral-mediated ornithine transcarbamylase expression in deficient mouse and human hepatocytes. J Clin Invest. 1993;92:1580–1586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jaffe HA, Danel C, Longenecker G, et al. Adenovirus-mediated in vivo gene transfer and expression in normal rat liver. Nat Genet. 1992;1:372–378.

    Article  CAS  PubMed  Google Scholar 

  35. Smith TA, Mehaffey MG, Kayda DB, et al. Adenovirus mediated expression of therapeutic plasma levels of human factor IX in mice. Nat Genet. 1993;5:397–402.

    Article  CAS  PubMed  Google Scholar 

  36. Tao N, Gao GP, Parr M, et al. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther. 2001;3:28–35.

    Article  CAS  PubMed  Google Scholar 

  37. Wolff G, Worgall S, van Rooijen N, et al. Enhancement of in vivo adenovirus-mediated gene transfer and expression by prior depletion of tissue macrophages in the target organ. J Virol. 1997;71:624–629.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cristiano RJ, Roth JA . Epidermal growth factor mediated DNA delivery into lung cancer cells via the epidermal growth factor receptor. Cancer Gene Ther. 1996;3:4–10.

    CAS  PubMed  Google Scholar 

  39. Wheeler MD, Yamashina S, Froh M, et al. Adenoviral gene delivery can inactivate Kupffer cells: role of oxidants in NF-kappaB activation and cytokine production. J Leukoc Biol. 2001;69:622–630.

    CAS  PubMed  Google Scholar 

  40. Wheeler MD, Kono H, Yin M, et al. Delivery of the Cu/Zn-superoxide dismutase gene with adenovirus reduces early alcohol-induced liver injury in rats. Gastroenterology. 2001;120:1241–1250.

    Article  CAS  PubMed  Google Scholar 

  41. Kanerva A, Wang M, Bauerschmitz GJ, et al. Gene transfer to ovarian cancer versus normal tissues with fiber-modified adenoviruses. Mol Ther. 2002;5:695–704.

    Article  CAS  PubMed  Google Scholar 

  42. Heel KA, Hall JC . Peritoneal defenses and peritoneum-associated lymphoid tissue. Br J Surg. 1996;83:1031–1036.

    Article  CAS  PubMed  Google Scholar 

  43. Folkman J . Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nat Med. 1995;1:27–31.

    Article  CAS  PubMed  Google Scholar 

  44. Liotta LA, Steeg PS, Stetler-Stevenson WG . Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991;64:327–336.

    Article  CAS  PubMed  Google Scholar 

  45. Krist LF, Kerremans M, Koenen H, et al. Novel isolation and purification method permitting functional cytotoxicity studies of macrophages from milky spots in the greater omentum. J Immunol Methods. 1995;184:253–261.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in-Aid for Young Scientists and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Fujiwara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujiwara, H., Kubota, T., Amaike, H. et al. Suppression of peritoneal implantation of gastric cancer cells by adenovirus vector-mediated NK4 expression. Cancer Gene Ther 12, 206–216 (2005). https://doi.org/10.1038/sj.cgt.7700782

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700782

Keywords

This article is cited by

Search

Quick links