Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Positron emission tomography (PET) imaging of tumor-localized Salmonella expressing HSV1-TK

Abstract

In order to noninvasively detect Salmonella delivery vectors within tumors, we used a genetically modified Salmonella, VNP20009, that expresses the herpes simplex thymidine kinase (HSV1-tk) reporter gene. VNP20009-TK were able to selectively localize within murine tumor models and to effectively sequester a radiolabeled nucleoside analogue, 2′-fluoro-1-β-D-arabino-furanosyl-5-iodo-uracil (FIAU). A quantitative relationship between the level of radioactivity accumulated and the number of bacteria in tumor and different tissues was demonstrated. The in vivo accumulation of [14C]FIAU measured in tissue sample homogenates and sections were related to Salmonella number and to immunohistochemical bacterial staining, respectively. Quantitative autoradiography (QAR) revealed the relative intensity of [14C]FIAU accumulation in a tumor cross-section, demonstrating that the peripheral region of the tumor was significantly less active than internal regions. [124I]FIAU positron emission tomography (PET) and subsequent tissue radioactivity and bacterial concentration measurements were compared. A log–log relationship was found, and the PET images could identify multiple tumor sites. The ability to noninvasively detect Salmonella vectors by PET imaging has the potential to be conducted in a clinical setting, and could aid in development of these vectors by demonstrating the efficiency and duration of targeting as well as indicating the locations of tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Pawelek J, Low KB, Bermudes D . Bacteria as tumour-targeting vectors. Lancet Oncol Rev. 2003; 4: 548–556.

    Article  Google Scholar 

  2. Yazawa K, Fujimori M, Amano J, Kano Y, Taniguchi S . Bifidobacterium longum as a delivery system for cancer gene therapy: Selective localization and growth in hypoxic tumors. Cancer Gene Ther. 2000; 7: 269–274.

    Article  CAS  Google Scholar 

  3. Yazawa K, Fujimori M, Nakamura T, et al. Bifidobacterium longum as a delivery system for cancer gene therapy of chemically induced rat mammary tumors. Breast Cancer Res Treat. 2001; 66: 165–170.

    Article  CAS  Google Scholar 

  4. Li X, Fu G-F, Fan Y-R, et al. Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther. 2003; 10: 105–111.

    Article  CAS  Google Scholar 

  5. Minton NP, Mauchline ML, Lemmon MJ, et al. Chemotherapeutic tumour targeting using clostridial spores. FEMS Microbiol Rev. 1995; 17: 357–364.

    Article  CAS  Google Scholar 

  6. Fox ME, Lemmon MJ, Mauchline ML, et al. Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia. Gene Therapy. 1996; 3: 173–178.

    CAS  PubMed  Google Scholar 

  7. Lemmon MJ, van Zijl P, Fox ME, et al. Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment. Gene Therapy. 1997; 8: 791–796.

    Article  Google Scholar 

  8. Theys J, Landuyt W, Nuyts S, et al. Specific targeting of cytosine deaminase to solid tumors by engineered Clostridium acetobutylicum. Cancer Gene Ther. 2001; 8: 294–297.

    Article  CAS  Google Scholar 

  9. Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B . Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci USA. 2001; 98: 15155–15160.

    Article  CAS  Google Scholar 

  10. Nuyts S, Mellaert IV, Theys J, Landuyt W, Lambin P, Anne J . Clostridium spores for tumor-specific drug delivery. Anti-Cancer Drugs. 2002; 13: 115–125.

    Article  CAS  Google Scholar 

  11. Nuyts S, Van Mellaert L, Theys J, et al. Radio-responsive recA promoter significantly increases TNFα production in recombinant clostridia after 2 Gy irradiation. Gene Therapy. 2002; 8: 1197–1201.

    Article  Google Scholar 

  12. Liu S-C, Minton NP, Giaccia AJ, Brown JM . Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Therapy. 2002; 9: 291–296.

    Article  CAS  Google Scholar 

  13. Pawelek JM, Low KB, Bermudes D . Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 1997; 57: 4537–4544.

    CAS  PubMed  Google Scholar 

  14. Low KB, Ittensohn M, Le T, et al. Lipid A mutant Salmonella with suppressed virulence and TNFα induction retain tumor-targeting in vivo. Nat Biotechnol. 1999; 17: 37–41.

    Article  CAS  Google Scholar 

  15. Platt J, Sodi S, Kelley M, et al. Antitumour effects of genetically engineered Salmonella in combination with radiation. Eur J Cancer. 2000; 36: 2397–2402.

    Article  CAS  Google Scholar 

  16. Luo X, Li Z, Lin S, et al. Antitumor effect of VNP20009, an attenuated Salmonella, in murine tumor models. Oncol Res. 2001; 12: 501–508.

    Article  CAS  Google Scholar 

  17. Rosenberg SA, Spiess PM, Kleiner DE . Antitumour effects in mice of the intravenous injection of attenuated Salmonella typhimurium. J Immunother. 2002; 25: 218–225.

    Article  CAS  Google Scholar 

  18. Yu YA, Shabahang S, Timiryasova TM, et al. Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat Biotechnol. 2004; 22: 313–320.

    Article  CAS  Google Scholar 

  19. Pawelek JM, Sodi S, Chakraborty AK, et al. Salmonella pathogenicity Island-2 and anticancer activity in mice. Cancer Gene Ther. 2002; 9: 813–818.

    Article  CAS  Google Scholar 

  20. Chen LM, Kaniga K, Galán JE . Salmonella spp. are cytotoxic for cultured macrophages. Mol. Microbiol. 1996; 21: 1101–1115.

    Article  CAS  Google Scholar 

  21. Monack DM, Raupach B, Hromockyj AE, Falkow S . Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc Natl Acad Sci USA. 1996; 93: 9833–9838.

    Article  CAS  Google Scholar 

  22. Zhou X, Mantis N, Zhang XR, Potoka DA, Watkins SC, Ford HR . Salmonella typhimurium induces apoptosis in human monocyte-derived macrophages. Microbiol Immunol. 2000; 44: 987–995.

    Article  CAS  Google Scholar 

  23. Clairmont C, Lee KC, Pike J, et al. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J Infect Dis. 2000; 181: 1996–2002.

    Article  CAS  Google Scholar 

  24. Lee KC, Zheng L-M, Xuo X, et al. Comparative evaluation of the acute toxic effects in monkeys, pigs, and mice of a genetically engineered Salmonella strain (VNP20009) being developed as an antitumor agent. Int J Toxicol. 2000; 19: 19–25.

    Article  Google Scholar 

  25. Zheng L-M, Luo X, Feng M, et al. Tumor amplified protein expression therapy: Salmonella as a tumor-selective protein delivery vector. Oncol Res. 2000; 12: 127–135.

    Article  CAS  Google Scholar 

  26. Bermudes D, Low KB, Pawelek J, et al. Tumour-selective Salmonella-based cancer therapy. Biotechnol Genet Eng Rev. 2001; 18: 219–233.

    Article  CAS  Google Scholar 

  27. Toso J, Gill VJ, Hwu P, et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol. 2002; 20: 142–152.

    Article  Google Scholar 

  28. Nemunaitis J, Cunningham C, Senzer N, et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 2003; 10: 737–744.

    Article  CAS  Google Scholar 

  29. Dresselaers T, Theys J, Nuyts S, et al. Non-invasive 19F MR spectroscopy of 5-fluorocytosine to 5-fluorouracil conversion by recombinant Salmonella in tumours. Br J Cancer. 2003; 89: 1796–1801.

    Article  CAS  Google Scholar 

  30. Tjuvajev J, Blasberg R, Luo X, Zheng L-M, King I, Bermudes D . Salmonella-based tumor-targeted cancer therapy: tumor amplified protein expression therapy (TAPET™) for diagnostic imaging. Control Release Soc. 2001; 74: 313–315.

    Article  CAS  Google Scholar 

  31. Qiao J, Doubrovin M, Sauter MV, et al. Tumor-specific transcriptional targeting of suicide gene therapy. Genet Ther. 2002; 9: 168–175.

    Article  CAS  Google Scholar 

  32. Tjuvajev JG, Chen SH, Joshi A, et al. Imaging adenoviral-mediated herpes virus thymidine kinase gene transfer and expression in vivo. Cancer Res. 1999; 59: 5186–5193.

    CAS  PubMed  Google Scholar 

  33. Bennett JJ, Tjuvajev JG, Johnson P, et al. Positron emission tomography imaging for herpes virus infection: implications for oncolytic viral treatments of cancer. Nat Med. 2001; 7: 859–863.

    Article  CAS  Google Scholar 

  34. Jacobs A, Tjuvajev JG, Doubrovin M, et al. Positron emission tomography-based imaging of transgene expression mediated by replication-conditional, oncolytic herpes simplex virus type 1 mutant vectors in vivo. Cancer Res. 2001; 61: 2983–2995.

    CAS  PubMed  Google Scholar 

  35. Tjuvajev JG, Stockhammer G, Desai R, et al. Imaging the expression of transfected genes in vivo. Cancer Res. 1995; 55: 6126–6132.

    CAS  PubMed  Google Scholar 

  36. Tjuvajev JG, Finn R, Watanabe K, et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res. 1996; 56: 4087–4095.

    CAS  PubMed  Google Scholar 

  37. Tjuvajev JG, Avril N, Oku T, et al. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res. 1998; 58: 4333–4341.

    CAS  PubMed  Google Scholar 

  38. Tjuvajev JG, Doubrovin M, Akhurst T, et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med. 2002; 43: 1072–1083.

    PubMed  Google Scholar 

  39. Hackman T, Doubrovin M, Balatoni J, et al. Imaging expression of cytosine deaminase – herpes virus thymidine kinase fusion gene (CD/TK) expression with [124I]FIAU and PET. Mol Imag. 2002; 1: 36–42.

    Article  CAS  Google Scholar 

  40. Low KB, Ittensohn M, Luo X, et al. Construction of VNP20009, a novel, genetically stable antibiotic sensitive strain of tumor-targeting Salmonella for parentral administration in humans. In: Springer C, ed. Suicide Gene Therapy: Methods and Protocols. Totowa, NJ: Humana Press; 2003: 47–59.

    Chapter  Google Scholar 

  41. Murray SR, Bermudes D, de Felipe SW, Low KB . Extragenic suppressors of msbB- growth defects in Salmonella. J Bacteriol. 2001; 183: 5554–5561.

    Article  CAS  Google Scholar 

  42. Bermudes D, Low B, Pawelek J . Tumor-targeted Salmonella: strain development and expression of the HSV TK effector gene. In: Walther W, and Stein U, eds. Gene Therapy: Methods and Protocols, Vol 35. Totowa, NJ: Humana Press; 419–436.

  43. Summers WC, Summers WP . [125I]deoxycytidine used in a rapid, sensitive, and specific assay for herpes simplex virus type 1 thymidine kinase. J Virol. 1977; 24: 314–318.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sheh Y, Koziorowski J, Balatoni J, et al. Low energy cyclotron production and chemical separation of “no carrier added” iodine-124 from a reusable, enriched tellurium-124 dioxide/aluminum oxide solid solution target. Radiochim Acta. 2000; 88: 169–173.

    Article  CAS  Google Scholar 

  45. Tjuvajev JG, Doubrovin M, Akhurst T, et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med. 2002; 43: 1072–1083.

    PubMed  Google Scholar 

  46. Blasberg RG, Groothuis D, Molnar P . Application of quantitative autoradiographic measurements in experimental brain tumor models. Semin Neurol. 1981; 1: 203–223.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Terry Doyle, Ivan King, and Mario Sznol for helpful discussions. This work was supported by National Cancer Institute contract N01-CO-07102, NIH Grants P50 CA86438 and R24 CA83084, and Vion Pharmaceuticals, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Blasberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soghomonyan, S., Doubrovin, M., Pike, J. et al. Positron emission tomography (PET) imaging of tumor-localized Salmonella expressing HSV1-TK. Cancer Gene Ther 12, 101–108 (2005). https://doi.org/10.1038/sj.cgt.7700779

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700779

Keywords

This article is cited by

Search

Quick links